

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

083488094

MATHEMATICS 9709/21

Paper 2 Pure Mathematics 2

May/June 2025

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

Given that $y = 6x\cos(x^2 + 1)$, find an expression for	$r \frac{dy}{dx}$. [2]]
		•
		•

(a)	Use logarithms to solve the inequality $4^x < 0.05$. Give your answer in the form $x <$ value of a is correct to 3 significant figures.	a, where the [2]
(b)	Solve the inequality $ 3x+8 < 9$.	[3]
		••••••
(-)		
(c)	Hence state the integers that satisfy both of the inequalities in parts (a) and (b).	[1]

3 (a) Sketch, on a single diagram, the graphs of $y = 3e^{-2x}$ and $y = \sec x$ for values of x such that $0 \le x < \frac{1}{2}\pi$.

5

(b) Show that the *x*-coordinate of the point of intersection of the two graphs satisfies the equation $x = \frac{1}{2} \ln(3\cos x)$. [2]

(c) Use an iterative formula, based on the equation in part (b), to find the x-coordinate of the point of intersection correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

The diagram shows the curve with equation $y = 6e^{2x} - e^{3x}$. The shaded region is bounded by the axes and the curve.

ind the exact x-coordinate of the maximum point.	[3]

© UCLES 2025

I the area of the shaded region		
	•••••	•••••
		 •••••
		 ••••••
		 ••••••
	•••••	 ••••••
		 ••••••

5 The polynomial p(x) is defined by

$$p(x) = ax^3 + bx^2 - ax - 24,$$

where a and b are constants. It is given that (2x-3) is a factor of p(x) and that the remainder is -15 when p(x) is divided by (x+1).

(a)	Find the values of a and b .	[4]

- 	* 0000800000009 * • 0000800000009 *	_
(b)	Hence factorise $p(x)$ completely.	[3]
		•••••
		••••••
		•••••
(c)	Hence solve the equation $p(3\csc\theta) = 0$ for $90^{\circ} < \theta < 270^{\circ}$.	[2]
(c)	Hence solve the equation $p(3\csc\theta) = 0$ for $90^{\circ} < \theta < 270^{\circ}$.	[2]
(c)		

6 The parametric equations of a curve are

$$x = \frac{2t+1}{3t+4}$$
, $y = 2\ln(3t+4)$,

10

where $t > -\frac{4}{3}$.

Sh	ow th	nat <u>d</u>	$\frac{y}{x}$ can	be e	xpres	sed in	n the	form	c(31	+4)	and	state	the v	alue (of the	con	stant	c.	[5]
••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••					•••••			•••••		••••••	•••••
••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••	••••••	•••••
••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••			•••••	•••••	•••••		•••••	•••••	•••••		•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••			•••••	•••••	••••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••					•••••			•••••		•••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••					•••••			•••••		•••••	•••••
••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••		•••••		•••••	•••••	•••••		•••••			•••••	•••••	•••••			•••••	•••••		•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••			•••••	•••••	••••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••					•••••			•••••		•••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••			•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
••	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••			•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••			•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••
•••	•••••	•••••	•••••	•••••	•••••	•••••		•••••				•••••	•••••	•••••	•••••	•••••	•••••		•••••
•••		•••••	•••••	•••••	•••••	•••••		•••••					•••••		•••••	•••••	•••••		•••••
	•••••	•••••	•••••	•••••	•••••	•••••		•••••				•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••				•••••	•••••			•••••					•••••			•••••	•••••		
· • •				•••••	•••••			•••••					•••••			•••••			•••••

DO NOT WRITE IN THIS MARGIN

(c)

© UCLES 2025

(b) It is given that the gradient of the curve at the point $(a, \ln 100)$ is m.

Find the values of a and m .	[4]
	••••••
	•••••
State whether the curve represents a decreasing function or an increasing function of a reason for your answer.	or neither. Give [1]

I	Prove that $\sin^2 2x + 4\cos^2 x \cos 2x \equiv 4\cos^4 x$. [3]
•	
I	Find the set of possible values of the constant k for which the equation
	$\sin^2 2x + 4\cos^2 x \cos 2x + 5 = k$
ŀ	nas no real solutions. [2

(c)

Find the exact value of $\int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} \sqrt{\sin^2 t + 4\cos^2(\frac{1}{2}t)\cos t} dt$.	[4]
3.4.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

DO NOT WRITE IN THIS MARGIN

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

