

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

937319

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2025

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

1 (a) Sketch the graph of y = |2x - 3|.

[1]

(b)	Solve the inequality $3x-1 < 2x-3 $.	[2]

It is given that $2 \ln p + \ln(p-1) - \frac{1}{2} \ln(q+1) = 3$.

Find q in terms of p .	[3]
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••

	* 0000800000004 *
3	Find the complex numbers z for which

Find the complex numbers z for which $\frac{z+5i}{z-5}$ is real and $ z = \sqrt{17}$. Give your $z = x+iy$, where x and y are real.	answers in the form [6]
	•••••

* 0000800000005 *

4 The parametric equations of a curve are

$x = \epsilon$	tan t	y = 3	$\tan^2 t$.

Find the equation of the tangent to the curve at the point $(e, 3)$. Give your answer in the where m and c are exact.	form $y = mx + c$, [6]

* 000080000007 *

9709/31/M/J/25

5	The polynomial $3x^3 + pax^2 + 7a^2x + qa^3$ is denoted by $f(x)$, where p , q and a are constants and $a \ne 0$
	When $f(x)$ is divided by $(x+2a)$ the remainder is $-22a^3$. When $f(x)$ is divided by $(3x-a)$ the remainder is $-a^3$.
	Find the values of p and q .

6 It is given that $z_1 = 3e^{\frac{1}{4}\pi i}$, $z_2 = \frac{3}{2}e^{\frac{1}{6}\pi i}$ and $\omega = 2e^{\frac{1}{2}\pi i}$.

(a) State the values of ωz_1 and ωz_2 . Give your answers in the form $r e^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.

(b) On a sketch of an Argand diagram with origin O, show the points A, B, C and D representing the complex numbers z_1 , z_2 , ωz_1 and ωz_2 respectively. [2]

(c) State the geometric effects of multiplying z_1 and z_2 by ω . [2]

Express $5\sin\left(x+\frac{1}{6}\pi\right)-4\cos x$ in the form $R\sin(x-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2}\pi$. State the exact value of R and give the value of α correct to 3 decimal places. [4]

2 decimal places.	$4\cos 2\theta = \sqrt{7}$ for $0 \le \theta \le \pi$. Give your answers co

With	th respect to the origin O , the points A and B have position vectors $2\mathbf{i} + 4\mathbf{k}$ and $5\mathbf{i} + \mathbf{j} + 6\mathbf{k}$ sectively. The line l_1 passes through the points A and B .
(a)	Find a vector equation for the line l_1 . [2]
The	line l_2 has equation $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 5\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.
(b)	Show that l_1 and l_2 do not intersect. [4]

* (13
(c)	Find the acute angle between the directions of l_1 and l_2 . [3]
(c)	Find the acute angle between the directions of l_1 and l_2 . [3]
(c)	

9 The constant a is such that $\int_{1}^{a} 6x \ln x \, dx = 4.$

(a)	Show that $a = \exp$	$\left(\frac{1}{6}\left(\frac{5}{a^2}+3\right)\right)$, where $\exp(x)$ denotes e^x .
-----	----------------------	--	-----------------------------------

[5]

	15	
(b)	Verify by calculation that a lies between 2 and 2.1.	[
(c)	Use an iterative formula based on the equation in part (a) to determine a places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	
(c)	places. Give the result of each iteration to 4 decimal places.	correct to 2 decim

10	(a)	Find the quotient and remainder when $x^3 + 5x^2 - 2x - 15$ is divided by $x^2 - 3$.	[3]
			•••••
			•••••

 •••••	•••••	•••••

	•••••	•••••	•••••	••••••
•••••		•••••		• • • • • • • • • • • • • • • • • • • •

(b) The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 + 5x^2 - 2x - 15}{6y(x^2 - 3)}.$$

It is given that y = 2 when x = 2.

Solve the differential equation to obtain an expression for y^2 in terms of x .	[5]

* 0000800000017 *

18

The diagram shows the curve $y = \cos x \sqrt{\sin 2x}$ for $0 \le x \le \frac{1}{2}\pi$. The curve has a maximum point at M, where x = a.

)	Find the exact value of <i>a</i> .	[6]
		•••••
		••••••
		•••••
		••••••
		••••••
		••••••

)	The region enclosed between the x-axis and the curve is rotated through 2π radians about the x-axis.
	Find the exact volume of the solid generated. [5]

Additional page

20

If you use the following page to complete the answer to any question, the question number must be clearly shown.
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Ever

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

