

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

972304544

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2025

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

DO NOT WRITE IN THIS MARGIN

[3]

1 (a) Sketch the graph of y = |3x - 2a|, where a is a positive constant.

(b) Hence or otherwise solve the inequality |3x-2a| < x+5a.

DO NOT WRITE IN THIS MARGIN

	* 0000800000003 *
1	
	Solve the equation $2 \ln(2x+3) - \ln(2x+3) = 2 \ln(2x+3) + \ln(2x+3) = 2 \ln(2x+3) = 2 \ln(2x+3) + \ln(2x+3) = 2 \ln(2x+$

.5	
_	

Solve the equation $2 \ln(2x+3) - \ln(2x+5) = \ln(3x)$.	[4]

		,
3	Find the exact value of $\int_{0}^{\frac{1}{4}\pi} 3\cos^2 5x dx$	

Find the exact value of	$\frac{4}{5}\pi^3 \cos^2 5x \mathrm{d}x.$		[4]
		 •••••	
		 •••••	

4 (a) It is given that $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$.

Show that $(z_1 z_2)^* = z_1^* z_2^*$. [3]

•••••	 	•••••	•••••

 	 	 	• • • • •	 	 	 	 	• • • •	 	 	 	 • • • • •	 	 • • • •	• • • • •	 	 • • • • •	

(h)	$z = 3e^{\frac{1}{4}\pi i}$ is a root of the equation $z^2 + hz + c = 0$, where h and c are real	

State the other root and hence find the values of b and c .	[3]

•••••	•••••	•••••	

5 The equation of a curve is $xy + y^2 e^{-x} = 4$.

(a)	Show that $\frac{dy}{dx} = \frac{y^2 - ye^x}{xe^x + 2y}$.	[4]
(b)	Find the gradients of the tangents to the curve when $x = 0$.	[2]

Γ		* 000080000007 *
(6	Find the complex numbers z for whi
		z = x + iy, where x and y are real.

z = x + iy, who	ere x and y are re	eal.			
•••••			•••••		
			•••••		
			•••••		
				•••••	
•••••	•••••		•••••	•••••	
	•••••		•••••	•••••	••••••
•••••	•••••		•••••	•••••	•••••
•••••••	•••••	••••••	•••••	•••••	•••••
••••••	•••••			•••••	
•••••	•••••			•••••	
•••••	•••••			•••••	

© UCLES 2025

(a)

7 I	Let $f(x) =$	$\frac{3a-5x}{(3a+2x)(2a-x)},$	where a	a is a	positive constant.
-----	--------------	--------------------------------	---------	--------	--------------------

Express $I(x)$ in partial fractions.	[3]
	•••••

* (9
(b)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 . [4]
	נדן
(c)	State the set of values of x for which the expansion in part (b) is valid. [1]

(a)

* 0	00080000010 *
1)	Prove the identity $\cot^2 \theta - \tan^2 \theta \equiv 4 \cot 2\theta \csc 2\theta$. [4]

(b)

Hence solve the equation $\cot^2 x - \tan^2 x = 5 \sec 2x$ for $0^{\circ} < x < 90^{\circ}$.	[4]
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	••••••
	•••••

9 With respect to the origin O, the points A, B and C have position vectors given by

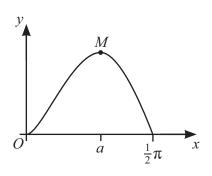
$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j}$$
, $\overrightarrow{OB} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ and $\overrightarrow{OC} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$.

The line *l* passes through *B* and *C*.

Find a vec	ector equation for l .	[2
••••••		
•••••		
•••••		
•••••		
•••••		
•••••		
The point	t P is the foot of the perpendicular from A to l .	
	t P is the foot of the perpendicular from A to l . position vector of P .	[4
		[4
		[4
		[4
		[4
		[4
		[4
		[
Find the p		
Find the p	position vector of P.	

	13	
(c)	The point D is the reflection of A in I . Find the position vector of D .	
(c)		

10 The variables x and y satisfy the differential equation


$$\sin 4y \frac{\mathrm{d}y}{\mathrm{d}x} = x \sin 2y \sin 3x.$$

It is given that $y = \frac{1}{12}\pi$ when $x = \frac{1}{2}\pi$.

(a)	Solve the differential equation, obtaining a relation between x and y .	[8]
		•••••
		••••••
		••••••
		•••••
		•••••
		••••••

	0000800000015 *	
(b) Given that $0 < v < \frac{1}{2}\pi$ find the values of v when $r = 0$		
(b)	Given that $0 < y < \frac{1}{2}\pi$, find the values of y when $x = 0$.	
(b)	Given that $0 < y < \frac{1}{2}\pi$, find the values of y when $x = 0$. [2]	
(b)	Given that $0 < y < \frac{1}{2}\pi$, find the values of y when $x = 0$. [2]	
(b)	Given that $0 < y < \frac{1}{2}\pi$, find the values of y when $x = 0$. [2]	
(b)	Given that $0 < y < \frac{1}{2}\pi$, find the values of y when $x = 0$. [2]	
(b)	Given that $0 < y < \frac{1}{2}\pi$, find the values of y when $x = 0$. [2]	
(b)		

16

The diagram shows the curve $y = \sqrt{x} \sin 2x$ for $0 \le x \le \frac{1}{2}\pi$. The curve has a maximum point at M, where x = a.

(a)	Show that $\tan 2a = -4a$	[4]
(b)	Show by calculation that $0.9 < a < 0.95$.	[2]

(d)

DO NOT WRITE IN THIS MARGIN

(c) Show that if a sequence of values given by the iterative formula

x_{n+1}	$=\frac{1}{2}(\pi$	-tan ⁻¹	$(4x_n)$
-----------	--------------------	--------------------	----------

converges, then it converges to a.	[2]
	•••••
	•••••
	•••••
	•••••
	••••••
	••••••
	••••••
	••••••
Use the iterative formula in part (c) to calculate <i>a</i> correct to 4 decimal places. Give the reach iteration to 6 decimal places.	result of [3]
	••••••
	••••••
	•••••
	••••••

18 Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

