

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

Paper 3 Pure Mathematics 3

9709/35

May/June 2025

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

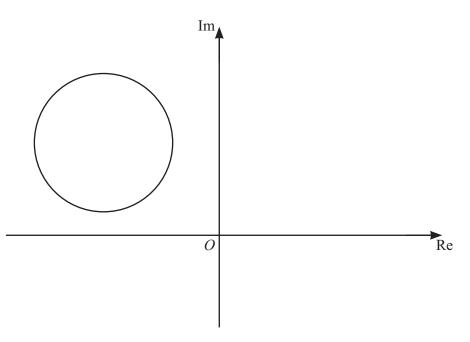
© UCLES 2025

* 0000800000003 *

Solve the equation $3^{4-2x} = 5(6^{x-1})$. Give your answer correct to 3 significant figures.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Solve the equation $3 \cot \theta - 4 \csc^2 \theta + 5 = 0$ for $-\pi \le \theta \le \pi$.	[5]

The complex numbers s and t are given by


 $s = 5(\cos 0.25 + i\sin 0.25)$ and $t = 6e^{3i}$.

Express $\frac{s}{t}$ in the form $re^{i\theta}$, where $-\pi < \theta \le \pi$ and $r > 0$.	
In an Argand diagram with origin O , the points A and B represent $\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	
$\frac{S}{t}$ respectively. By considering the line segments OA and OB , or otherwise, state	

0000800000		

Find the exact coordinates of the stationary point of the curve with equation $y = 3x^3 \ln x^4$, for $x > 0$. [5]

The diagram shows the locus of points representing the complex numbers, z, satisfying |z+5-4i|=3.

(a) For the points on this locus, determine the maximum and minimum possible values of |z|. [3]

(b) For the points on this locus, determine the minimum possible value of arg z. [3]

6 The parametric equations of a curve are

$$x = \frac{2}{\cos 3t}$$
 and $y = \tan 3t$,

8

for $0 \le t \le 2\pi$.

	at $\frac{dy}{dx}$ can be w	1100011 000 11 00	,			1001101	
•••••	•••••	•••••		•••••		•••••	
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	*****************	•••••	
•••••	•••••			• • • • • • • • • • • • • • • • • • • •		•••••	
						•••••	
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
				• • • • • • • • • • • • • • • • • • • •			
••••••	•••••	•••••	•••••	•••••	•••••	•••••	
				•••••		•••••	
•••••	•••••	•••••	•••••	•••••	•••••	•••••	
•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
						•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
	•••••	•••••		•••••		•••••	
••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••

© UCLES 2025

_
n

form $y = mx + c$, where the constants m and c are exact.	[4]

[3]

- 7 The equation of a curve is $y = \tan^{-1}(4x)$.
 - (a) Find the exact values of x when the gradient of the curve is $\frac{1}{4}$.

(b)

Find the exact value of \int_0^{∞}	y dx.	[5]

8 (a) By sketching a suitable pair of graphs, show that the equation $\sec 2x = -2x - \frac{1}{2}$ has exactly one root in the interval $0 \le x \le \frac{1}{2}\pi$. [2]

(b)	Show by calculation that this root lies between 0.8 and 1.2.	[2]
		••••
		••••
		••••
		••••
		••••
		••••
		•••••
		••••

(d)

* 0000800000013 *

(c) Show that, if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{1}{2}\cos^{-1}\left(\frac{-2}{4x_n + 1}\right)$$

converges, then it converges to the root of the equation in part (a).	[2]
Use this iterative formula to calculate this root correct to 3 decimal places. Give iteration to 5 decimal places.	e the result of each [3]
	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]
iteration to 5 decimal places.	[3]

(a)	Express $\frac{12x^2 + 55x - 2}{(3x - 2)(x + 6)}$ in partial fractions.	[5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

(b)

Hence obtain the expansion of $\frac{12x^2 + 55x - 2}{(3x - 2)(x + 6)}$ in ascending powers of x , up to and including the term in x^2 . [4]

10 With respect to the origin O, the points A, B and C have position vectors given by

\overrightarrow{O} \overrightarrow{O}	\overrightarrow{OD} 1. $O' + OI$	1	\overrightarrow{OC} 4: \cdot 5: 01
$OA = 2\mathbf{i} - \mathbf{j} - 6\mathbf{k},$	$OB = b\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$	and	$O\hat{C} = -4\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$
y ,	J		J

(a)	It is given that	\overrightarrow{AB}	=	\overrightarrow{BC}	
()				_	

Find the value of b.	[3]

(c)

© UCLES 2025

(b) A, B, C and D are the vertices of a rhombus.

Find the position vector of D .	[2]
Calculate angle ABC.	[3]

11 The variables x and y satisfy the differential equation

$$(x^2+3)\frac{dy}{dx} = e^{3y}(x-2).$$

It is given that $y = 0$ when $x = 0$.	
Solve the differential equation, and find the value of y when $x = 2$.	[8]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	• • • •
	••••

* 0000800000019 *

Additional page

20

If you use the following page to complete the answer to any question, the question number must be clearly shown.
Permission to reproduce items where third-party owned material protected by convright is included has been sought and cleared where possible. Every

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

