

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

5 7 8 4 5 1 3 0 3

FURTHER MATHEMATICS

9231/11

Paper 1 Further Pure Mathematics 1

May/June 2025

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

(a) Use standard results from the list of formulae (MF19) to show that

$$\sum_{r=1}^{n} (2-3r)(5-3r) = an^{3} + bn^{2} + cn,$$

where a , b and c are integers to be determined.	[3]

(b)

3

Use the method of differences to find $\sum_{r=1}^{\infty} \frac{1}{(2-3r)(5-3r)}$ in terms of n .	[4]
r=1	
	•••••
	•••••
	•••••
	••••••
	••••••
	•••••
Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{(2-3r)(5-3r)}.$	[1]

(c)

- The cubic equation $x^3 + 2x + 1 = 0$ has roots α , β , γ .
 - (a) Find a cubic equation whose roots are $\alpha^3 1$, $\beta^3 1$, $\gamma^3 1$.

[3]

•••••	 	 	•••••
	 	 	•••••

• • •	• • • •	• • • •	 • • • •	• • • •	• • •	• • • •	 • • • •	 • • •	• • • •	• • • •	 • • • •	• • •	• • •	• • •	• • •	 • • • •	• • • •	• • •	• • •	• • •	• • •	• • • •	• • • •	• • • •	• • • •	 • • •	• • •	• • • •	• • •	• • •	• • • •	 • • •	• • • •	 			• • •	• • • •	• • •
• • • •			 				 	 • • •	• • • •		 		• • •	•••	•••	 		• • •	• • • •	•••	• • •	• • • •				 • • • •	• • • •					 •••	• • • •	 	• • • •	,			•••

•••••	•••••	 •••••	

(b)

(c)

* 0000800000005 *

Find the value of $(\alpha^3 - 1)^2 + (\beta^3 - 1)^2 + (\gamma^3 - 1)^2$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]
Find the value of $(\alpha^3 - 1)^3 + (\beta^3 - 1)^3 + (\gamma^3 - 1)^3$.	[2]

The sequence u_1, u_2, u_3, \dots is such that $u_1 = 5$ and $u_{n+1} = 6u_n + 5$ for $n \ge 1$.

(a)	Prove by induction that $u_n = 6^n - 1$ for all positive integers n .	[5]
		•••••
		•••••
(L)	Deduce destant in the distribution of the second of	
(D)	Deduce that u_{2n} is divisible by u_n for $n \ge 1$.	[2]

BLANK PAGE

- The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, where $0 < \theta < 2\pi$.
 - (a) The matrix M represents a sequence of two geometrical transformations in the x-y plane.

State the type of each transformation, and make clear the order in which they are applied. [2
Find the value of θ for which the transformation represented by M has a line of invariant points. [7]

* 0000800000009 *

- 5 The curve C has polar equation $r = \theta e^{\frac{1}{8}\theta}$, for $0 \le \theta \le 2\pi$.
 - (a) Sketch C. [2]

(b) Find the area of the region bounded by C and the initial line, giving your answer in the form $(p\pi^2 + q\pi + r)e^{\frac{1}{2}\pi} + s$, where p, q, r and s are integers to be determined. [6]

*	000080000011 *
(c)	Show that, at the point of C furthest from the initial line,
	$\theta\cos\theta + \left(\frac{1}{8}\theta + 1\right)\sin\theta = 0$
	and verify that this equation has a root between 5 and 5.05. [5]
	MINAN

6 The points A, B, C have position vectors

$$\mathbf{i} - 2\mathbf{k}$$
, $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $2\mathbf{i} - \mathbf{j} - \mathbf{k}$,

12

respectively.

	Find the equation of the plane ABC, giving your answer in the form $ax + by + cz = d$.	[5
A po	oint D has position vector $\mathbf{i} + t\mathbf{k}$, where $t \neq -2$.	
b)	Find the acute angle between the planes ABC and ABD.	[4
(b)	Find the acute angle between the planes ABC and ABD.	[4
(b)	Find the acute angle between the planes ABC and ABD.	[4
(b)	Find the acute angle between the planes ABC and ABD.	[4
(b)	Find the acute angle between the planes ABC and ABD.	
(b)		
(b)		
(b)		[4

	Find the values of t such that the shortest distance between the lines AB and CD is $\sqrt{2}$.
•	
•	
•	
•	
•	
•	

© UCLES 2025

[2]

[4]

7 The curve C has equation $y = \frac{2x^2 - 5x}{2x^2 - 7x - 4}$.

(b) Find the coordinates of any stationary points on *C*.

(a)	Find the equations of the asymptotes of <i>C</i> .

•••••			• • • • • • • • • • • • • • • • • • • •	
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

••••••	•••••	••••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

* 0000800000015 *

(c) Sketch C, stating the coordinates of the intersections with the axes.

15

[3]

(d) Sketch the curve with equation $y = \left| \frac{2x^2 - 5x}{2x^2 - 7x - 4} \right|$. [1]

Find in exact form the set of values of x for which $\left \frac{2x^2 - 5x}{2x^2 - 7x - 4} \right < \frac{1}{9}$.

Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

* 0000800000019 *

19

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

