



# Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

# 952421569

## **FURTHER MATHEMATICS**

9231/14

Paper 1 Further Pure Mathematics 1

May/June 2025

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

# **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].

This document has 16 pages.

1 (a) Use the List of formulae (MF19) to find  $\sum_{r=1}^{n} (2r+1)$  in terms of n, simplifying your answer. [2]

| <br> | <br>                      | <br> | <br> | <br> | <br> | <br> |  |
|------|---------------------------|------|------|------|------|------|--|
| <br> | <br>                      | <br> | <br> | <br> | <br> | <br> |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
| <br> | <br>                      | <br> | <br> | <br> | <br> | <br> |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
|      |                           |      |      |      |      |      |  |
| <br> | <br>• • • • • • • • • • • | <br> | <br> | <br> | <br> | <br> |  |
|      |                           |      |      |      |      |      |  |

| <br> | <br> |
|------|------|

| <br> | <br> |
|------|------|
|      |      |

| ••••• | <br>••••• |  |
|-------|-----------|--|
|       |           |  |

| <br>• • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • |
|---------------------------------------------|---------------------------------------------|
|                                             |                                             |
|                                             |                                             |
|                                             |                                             |

| (b) | Show that | 2r+1                             | _ 1       | _ 1        | Г | 11  |
|-----|-----------|----------------------------------|-----------|------------|---|-----|
| (D) | Show that | $\frac{2r+1}{(r^2+1)(r^2+2r+2)}$ | $r^2 + 1$ | $r^2+2r+2$ | L | .1] |

| • • • • | • • • • • • • | • • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • | • • • • • • |           | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • • | • • • • • |             | • • • • • • | • • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • • | <br>• • • • |
|---------|---------------|-------------|-------------|-----------|-------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|-----------|-------------|-------------|-----------|-------------|-------------|-------------|-------------|-----------|-------------|-------------|-------------|
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
| • • • • | • • • • • • • | • • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • • | •••••     | • • • • • • | • • • • • • | • • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • • | <br>• • • • |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |
|         |               |             |             |           |             |           |             |           |           |           |           |           |             |             |           |             |             |           |             |             |             |             |           |             |             |             |

| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |

| ••••• | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|-------|---------------------------------------------|-----------------------------------------|
|       |                                             |                                         |
|       |                                             |                                         |
|       | <br>                                        |                                         |

| • • • • • • • • • • • • • • • • • • • • | ••••• | • • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • |
|-----------------------------------------|-------|-----------------------------------------|---------------------------------------------|
|                                         |       |                                         |                                             |

| • • • • • • • • • • • • • • • • • • • • | <br>••••• | • • • • • • • • • • • • • • • • • • • • | ••••• |
|-----------------------------------------|-----------|-----------------------------------------|-------|
|                                         |           |                                         |       |
|                                         |           |                                         |       |
|                                         | <br>      |                                         |       |

| <br> | <br> |
|------|------|

DO NOT WRITE IN THIS MARGIN

**(c)** 



3

| Use the method of differences to find $\sum_{n=1}^{\infty} \frac{2r+1}{n}$                  | [2]   |
|---------------------------------------------------------------------------------------------|-------|
| Use the method of differences to find $\sum_{r=1}^{\infty} \frac{2r+1}{(r^2+1)(r^2+2r+2)}.$ | [4]   |
| r=1                                                                                         |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
|                                                                                             |       |
|                                                                                             | ••••• |
| Deduce the value of $\sum_{r=1}^{\infty} \frac{2r+1}{(r^2+1)(r^2+2r+2)}.$                   | [1]   |
| $\sum_{r=1}^{\infty} (r^2+1)(r^2+2r+2)$                                                     | [1]   |
| <i>r</i> −1 · · · · · · · · · · · · · · · · · · ·                                           |       |

(d)

|      | (n-2)!x''. | [6        |
|------|------------|-----------|
|      |            |           |
|      |            |           |
| <br> |            | <br>••••  |
|      |            |           |
|      |            |           |
|      |            |           |
| <br> |            | <br>••••• |
|      |            |           |

| <br> |
|------|
|      |
|      |
| <br> |
|      |
| <br> |

DO NOT WRITE IN THIS MARGIN

| * 0000800000005 * |    |
|-------------------|----|
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   | •• |
|                   |    |
|                   |    |
|                   |    |
|                   |    |

3 The points A, B and C have position vectors

$$2\mathbf{j} + 3\mathbf{k}$$
,  $-5\mathbf{i} + 3\mathbf{j} + \mathbf{k}$  and  $\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$ 

respectively, relative to the origin O.

|   | Find the equation of the plane ABC, giving your answer in the form $ax + by + cz = d$ . [5] |
|---|---------------------------------------------------------------------------------------------|
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
| • |                                                                                             |
| • |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   | Find the perpendicular distance from $O$ to the plane $ABC$ .                               |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |

| 7 Find the acute angle between the line $OA$ and the plane $ABC$ . | 3] |
|--------------------------------------------------------------------|----|
|                                                                    | •• |
|                                                                    |    |
|                                                                    |    |
|                                                                    |    |
|                                                                    |    |
|                                                                    | •• |
|                                                                    |    |
|                                                                    | •• |
|                                                                    |    |
|                                                                    |    |
|                                                                    |    |
|                                                                    | •• |
|                                                                    | •• |
|                                                                    | •• |
|                                                                    |    |
|                                                                    |    |
|                                                                    | •• |
|                                                                    |    |
|                                                                    |    |

(a)



The cubic equation  $x^3 + bx^2 + cx - 1 = 0$ , where b and c are constants, has roots  $\alpha$ ,  $\beta$ ,  $\gamma$ .

α It is given that the matrix is singular.

| Show that $\alpha^2 + \beta^2 + \gamma^2 = 3$ . | [4]    |
|-------------------------------------------------|--------|
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 |        |
|                                                 | •••••• |

© UCLES 2025



9

| (b) | It is given that $\alpha^3 + \beta^3 + \gamma^3 = 3$ and that the constants b and c are positive. |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|--|
|     | Find the values of $b$ and $c$ .                                                                  |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |
|     |                                                                                                   |  |  |  |

9231/14/M/J/25



The matrix **M** represents a sequence of two transformations in the x-y plane given by a one-way stretch in the x-direction, scale factor 3, followed by a reflection in the line y = x. 5

| a)  | Find M.                                                                                                       | [3]   |
|-----|---------------------------------------------------------------------------------------------------------------|-------|
|     |                                                                                                               | ••••• |
|     |                                                                                                               | ••••• |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
| b)  | Give full details of the geometrical transformation in the $x$ - $y$ plane represented by $\mathbf{M}^{-1}$ . | [3]   |
|     |                                                                                                               | ••••• |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
| Γhe | matrix <b>N</b> is such that $\mathbf{MN} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ .                   |       |
| c)  | Find N.                                                                                                       | [3]   |
|     |                                                                                                               | ••••• |
|     |                                                                                                               | ••••• |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
|     |                                                                                                               | ••••• |
|     |                                                                                                               |       |
|     |                                                                                                               |       |
|     |                                                                                                               | ••••• |

|  | * 0000800000011 * |
|--|-------------------|
|  |                   |

| represer | nted by MN                              | N.                                      |        |        |                                         |                                         |       |       |        |
|----------|-----------------------------------------|-----------------------------------------|--------|--------|-----------------------------------------|-----------------------------------------|-------|-------|--------|
|          | •••••                                   |                                         |        | •••••  |                                         | •••••                                   |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | • • • • • • • • • • • • • • • • • • • • | •                                       | •••••  | •••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |       |       | •••••• |
| •••••    | •••••                                   |                                         | •••••  | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••                                   | ••••• |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | ••••••                                  | • • • • • • • • • • • • • • • • • • • • | •••••  | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••                                   |       | ,     | •••••  |
|          |                                         |                                         |        | •••••  |                                         |                                         |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| ••••••   | •••••                                   |                                         | •••••  | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••                                   | ••••• |       | •••••  |
|          |                                         |                                         |        | •••••  |                                         |                                         |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  | •••••  | ••••••                                  | •••••                                   |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | •••••                                   |                                         | •••••  | •••••  | •••••                                   | •••••                                   |       |       | •••••  |
|          | • • • • • • • • • • • • • • • • • • • • |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | •••••                                   |                                         | •••••  | •••••  | •••••                                   |                                         |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | • • • • • • • • • • • • • • • • • • • • | •                                       | •••••• | •••••• | ••••••                                  | • • • • • • • • • • • • • • • • • • • • |       |       | •••••  |
|          | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  | •••••  | • • • • • • • • • • • • • • • • • • • • |                                         |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       | •••••  |
|          |                                         |                                         |        |        |                                         |                                         |       |       |        |
| •••••    | • • • • • • • • • • • • • • • • • • • • | •••••                                   | •••••  | •••••  | ••••••                                  | •••••                                   |       | ••••• |        |
|          | •••••                                   |                                         |        |        |                                         |                                         |       |       |        |

© UCLES 2025



- 6 The curve C has polar equation  $r = a \tan(\frac{1}{8}\theta)$ , where a is a positive constant and  $0 \le \theta \le 2\pi$ .
  - (a) Sketch C and state, in terms of a, the greatest distance of a point on C from the pole. [3]

|           |       |       | •••••• |        | ••••• |        |  |
|-----------|-------|-------|--------|--------|-------|--------|--|
| <br>      |       |       |        |        |       |        |  |
|           |       | ••••• | •••••  | •••••  | ••••• | •••••  |  |
|           | ••••• |       |        | •••••• |       | •••••• |  |
| <br>••••• | ••••• | ••••• | •••••  | •••••  | ••••• | •••••  |  |
| <br>      |       |       |        |        |       | •••••• |  |
| <br>      | ••••• | ••••• | •••••  | •••••  |       | •••••  |  |
| <br>      | ••••• | ••••• | •••••  | •••••  |       | •••••  |  |
| <br>••••• | ••••• | ••••• | •••••  | •••••  | ••••• | •••••  |  |
| <br>••••• | ••••• |       | •••••  | •••••  |       | •••••  |  |
| <br>      |       |       |        |        |       |        |  |
| <br>      |       |       |        |        |       |        |  |
| <br>      |       |       |        |        |       |        |  |
| <br>      |       |       |        |        |       | •••••  |  |
| <br>      |       | ••••• | •••••  | •••••  |       | •••••  |  |
|           |       |       |        |        |       |        |  |

\* 000080000013 \*

(c) Show that, at the point on C furthest from the initial line,

| $4\sin\left(\frac{1}{4}\theta\right)$ | $\cos\theta + \sin\theta = 0$ |
|---------------------------------------|-------------------------------|
|---------------------------------------|-------------------------------|

13

| and verify that this equation has a root between 4.95 and 5. | [6] |
|--------------------------------------------------------------|-----|
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |
|                                                              |     |



7 The curve C has equation  $y = \frac{x^2 + x - 4}{x^2 + x + 2}$ .

(a) State the equation of the asymptote of C. [1]

**(b)** Show that, for all real values of x,  $-\frac{17}{7} \le y < 1$ . [4]

| ••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|-------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|       |                                         |                                         |                                         |                                         |                                         |
|       |                                         |                                         |                                         |                                         |                                         |
|       |                                         |                                         |                                         |                                         |                                         |
|       |                                         |                                         |                                         |                                         |                                         |
|       |                                         |                                         |                                         |                                         |                                         |
|       |                                         |                                         |                                         |                                         |                                         |

| <br> | <br> |  |
|------|------|--|
|      |      |  |
| <br> | <br> |  |

(c) Find the coordinates of any stationary points of C. [3]

| ••••• | <br> | ••••• | ••••• |  |
|-------|------|-------|-------|--|
|       | <br> |       |       |  |
|       | <br> |       |       |  |
|       |      |       |       |  |

.....



(d) Sketch C, stating the coordinates of the intersections with the axes.

15

[3]

(e) Sketch the graph with equation  $y = \frac{|x|^2 + |x| - 4}{|x|^2 + |x| + 2}$  and find the set of values of x for which

$$\frac{|x|^2 + |x| - 4}{|x|^2 + |x| + 2} < -\frac{1}{2}.$$
 [5]

| ••••• | <br>•••••  | •••••  | <br>•••••  |
|-------|------------|--------|------------|
| ••••• | <br>       |        | <br>       |
|       |            |        |            |
| ••••• | <br>•••••  | •••••  | <br>•••••• |
|       | <br>       |        | <br>       |
|       |            |        |            |
| ••••• | <br>•••••• | •••••• | <br>•••••  |
|       |            |        |            |



# Additional page

16

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
| Permission to reproduce items where third-party owned material protected by convight is included has been sought and cleared where possible. Ever |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

