

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

3120670749

FURTHER MATHEMATICS

9231/23

Paper 2 Further Pure Mathematics 2

May/June 2025

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

	* 0000800000002 *
1	Find the Maclaurin's series for $e^{\left(\frac{1}{x+2}\right)}$

 			$\left(\begin{array}{c} 1 \end{array}\right)$	

Find the Maclaurin's series for e^{x+2} up to and including the term in x .	[5]
	••••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

(b)

2 (a) Starting from the definitions of tanh and sech in terms of exponentials, prove that

$\tanh^2 t + \mathrm{sech}^2 t = 1.$	[3]
	••••
The curve C has parametric equations	
$x = \ln(\cosh t), y = \tan^{-1}(\sinh t), \text{for } 0 \le t \le 1.$	
Find the length of C .	[5]
	· · · · · ·
	· · · · · ·
	· · · · · ·
	••••
	••••
	••••
	••••
	••••
	••••

3 The curve C has equation

(a)

$$9y^2 - 3\sinh^{-1}(xy) = 1 - 3\ln 3.$$

Show that, at the point $(4, \frac{1}{3})$ on C , $\frac{dy}{dx} = -\frac{1}{2}$.	[4]

(b)

Find the value of $\frac{d^2y}{dx^2}$ at the point $(4, \frac{1}{3})$.	[5]
	••••
	••••
	••••
	••••
	••••
	••••
	•••••
	••••
	••••
	••••
	••••
	••••
	••••
	•••••
	••••
	••••
	••••
	••••

4 Find the particular solution of the differential equation

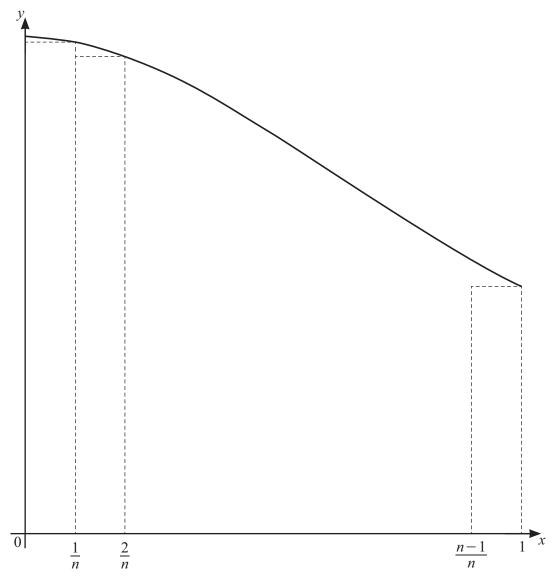
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{d}x}{\mathrm{d}t} - 2x = 2t^2 + t - 1,$$

given that, when $t = 0$, $x = \frac{dx}{dt} = 0$.	[10]

* 000080000007 *

5 (a) Use de Moivre's theorem to show that

$\sec 5\theta =$	$=\frac{\sec^5\theta}{5\sec^4\theta-20\sec^2\theta+16}$. [6]


(b) Hence, obtain the roots of the equation

$\sqrt{3}x^5$	1024	1.40 × 2	22 -	_ ^
$\sqrt{3}x^{3}$ –	10x -	+40x² -	- 32 =	= ()

in the form $sec(q\pi)$, where q is rational.	[4]
	•••••

(

10

The diagram shows the curve with equation $y = \frac{1}{x^2 + 1}$ for $0 \le x \le 1$, together with a set of *n* rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that

$\sum_{r=1}^{n} \frac{n}{n^2 + r^2} < \frac{1}{4}\pi.$	[5]

(b)	Use a similar method to find a lower bound for $\sum_{r=1}^{n} \frac{n}{n^2 + r^2}$. Give your answer in terms of
	and π .

7 Find the solution of the differential equation

dy	2x+6 $y = 4$
$\frac{d}{dx}$	$\frac{1}{x^2+6x+5}y-4$

given that $y = 0$ when $x = 0$. Give your answer in an exact form.	[9]	

* 000080000013 *

13

9231/23/M/J/25

8 (a) Find the values of a for which the system of equations

$$\frac{3}{2}x + 3y + 8z = 1,ax + 3y + 4z = 2,ay - z = 3,$$

es not have a unique solution.	

The matrix A is given by

(b)

$$\mathbf{A} = \begin{pmatrix} \frac{3}{2} & 3 & 8 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}.$$

Given that $\mathbf{B} = \mathbf{A}^{-1}$, use the characteristic equation of \mathbf{A} to show that $\mathbf{B}^2 = p\mathbf{I} + q\mathbf{A}$, where p and q are constants to be determined.	
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••

(c)

* 0000800000015 *

Find a matrix P and a diagonal matrix D such that $A^{-1} = PDP^{-1}$.	[7]
	•••••
	••••••••••
	•••••
	•••••
	••••••
	••••••
	•••••
	•••••
	•••••

Additional page

16

If you use the following page to complete the answer to any question, the question number must be clearly shown.
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

