

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

441282733

FURTHER MATHEMATICS

9231/24

Paper 2 Further Pure Mathematics 2

May/June 2025

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

(a) Find the values of k for which the system of equations

$$x + 2y + 3z = 1,$$

 $kx + 5y + 6z = 2,$
 $7x + 2ky + 9z = 3,$

2

(b)

Find the exact value of $\int_{1}^{2} \frac{1}{\sqrt{x^2 - 2x + 5}} dx$, giving your answer in logarithmic form.	[6]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Find the particular solution of the differential equation 3

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = 13\mathrm{e}^{3x}$$

given that $y = 1$ and $\frac{dy}{dx} = 0$ when $x = 0$.	[10]
	•••••

* 0000800000005 *

4 A curve has parametric equations

r =	$t^3 - 1$	$t^2 + t -$	1	and	$v = te^t$.
λ – 1	ι ι	: I L	1	anu	$v - \iota c$.

	Show that 1 is the only real value of t for which $x = 0$.	[1]
		•••••
		•••••
		••••••
		•••••
		•••••
•		•••••
•		•••••
•		•••••
	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(t+1)\mathrm{e}^t}{3t^2 - 2t + 1}.$	[3]
	3l - 2l + 1	
•		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
••		•••••
•		•••••
		••••••
		•••••

	0000800000007 *
(c)	Find the Maclaurin's series for y

(c)	Find the Maclaurin's series for y up to and including the term in x^2 .	[6]
		•••••

5 (a) Use de Moivre's theorem to show that

$\sin 7\theta = -64\sin^7\theta + 112\sin^5\theta - 56\sin^3\theta + 7\sin\theta.$	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

* 000080000009 *

(b) Hence find all roots of the equation

$64r^{6}$ –	$112r^{4}$	$+56x^{2}$	-7 =	0
$0+\lambda$	112λ	$\pm 30\lambda$	_ / _	v

9

in the form $\sin q\pi$, where q is a rational number.	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

9231/24/M/J/25

6 Find the solution of the differential equation

$\mathrm{d}v$		- 2	_	-1
$x\frac{\mathrm{d}y}{\mathrm{d}x}-y$	=	$2x^2$	tan	^{1}x

for which $y = \frac{1}{2}\pi$ when $x = 1$. Give your answer in the form $y = f(x)$.	[9]

* 000080000011 *	

7 The matrix **A** is given by

	/1	7	11
$\mathbf{A} =$	0	2	5.
	0/	0	-3

Find a matrix P and a diagonal matrix D such that $\mathbf{A}^6 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	
	•••••
	•••••
	•••••
	•••••

(b) Use the characteristic equation of A to show that

4 6	=	aA^2	+	hΔ	+.	c I
	_	u	- 1 /		- 1 (

where a , b and c are integers to be determined.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

- 8 The curve C has equation $y = \tanh x$ for $x \ge 0$.
 - (a) Sketch C and state the equation of the asymptote.

[2]

(b) By considering a suitable set of N rectangles of unit width, use your sketch to show that

$$\sum_{r=1}^{N} \tanh r > \ln(\cosh N). \tag{3}$$

		• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

.....

(c) The arc of C joining the point where x = 0 to the point where $x = \frac{1}{2} \ln 3$ is rotated through one complete revolution about the x-axis. The area of the surface generated is denoted by S.

15

(i) Use the substitution $u = \sqrt{1 + \operatorname{sech}^4 x}$ to show that

$S = \pi \int_{\frac{5}{4}}^{\sqrt{2}} \frac{u^2}{u^2 - 1} \mathrm{d}u.$	[7]
	•••••
	•••••
	•••••
	•••••
	•••••

F	Find the exact value of $\pi \int_{\frac{5}{4}}^{\infty}$	$\frac{\overline{u}^2}{u^2 - 1} du$. You need not simplify your answer.	
			•••
			•••
			•••
			•••
•			••
•			••
•			••
			••
			••
			••
•			••
•			••
•			••
			••
			••
			••
			•••
•			••

Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

