

This document consists of 20 printed pages.

© Cambridge University Press & Assessment 2025

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/22

Paper 2 Fundamental Problem-solving and Programming Skills May/June 2025

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2025 series for most
Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level
components.

Due to a series-specific issue during the live exam series, all candidates were awarded full marks for
questions 1(a)(ii) and 1(b)(ii). The mark scheme for these questions was not used by examiners.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 2 of 20

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level
descriptions for a question. Each question paper and mark scheme will also comply with these
marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question

• the specific skills defined in the mark scheme or in the generic level descriptors for the question

• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do

• marks are not deducted for errors

• marks are not deducted for omissions

• answers should only be judged on the quality of spelling, punctuation and grammar when these
features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 3 of 20

Annotations guidance for centres

Examiners use a system of annotations as a shorthand for communicating their marking decisions to
one another. Examiners are trained during the standardisation process on how and when to use
annotations. The purpose of annotations is to inform the standardisation and monitoring processes
and guide the supervising examiners when they are checking the work of examiners within their team.
The meaning of annotations and how they are used is specific to each component and is understood
by all examiners who mark the component.

We publish annotations in our mark schemes to help centres understand the annotations they may
see on copies of scripts. Note that there may not be a direct correlation between the number of
annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an
indication of the quality of the response.

The annotations listed below were available to examiners marking this component in this series.

Annotations

Annotation Meaning

 Benefit of the doubt

 To indicate where a key word/phrase/code is missing

 Incorrect

 Follow through

 Indicate a point in an answer

Highlighted text To draw attention to a particular aspect or to indicate where parts of an answer
have been combined

 Ignore

 Not answered question

 No benefit of doubt given

 No examples or not enough

Not relevant or used to separate parts of an answer

Off-page
comment

Allows comments to be entered at the bottom of the RM marking window and
then displayed when the associated question item is navigated to.

 Repetition

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 4 of 20

Annotation Meaning

 Indicates that work or a page has been seen including blank answer spaces
and blank pages.

 Correct

 Too vague

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 5 of 20

Mark scheme abbreviations
/ separates alternative words / phrases within a marking point
// separates alternative answers within a marking point
Underline actual word given must be used by candidate (grammatical variants accepted)
Max indicates the maximum number of marks that can be awarded
() the word / phrase in brackets is not required, but sets the context
bold word/phrase in bold indicates this is a key word/phrase in the candidates answer and
 this word/phrase or a word/phrase with a similar meaning must be present

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 6 of 20

Question Answer Marks

1(a)(i) One mark for

Choice of program development cycle depends on the approach/method
required to produce the program

Or

One mark for a factor that would influence the choice of program development
cycle, e.g.

• Rapid development of program/prototypes required

• Need for prototypes (at an early stage)

• Complexity of problem

• Skills / experience of development team / programmer(s)

• Budget / Time / Resources available

• Size of development team

• Developer / programmer can return to earlier stages / any stage

• Avoidance of repeating previous stages in development of program

• How much involvement clients will have

• Allows the (program) requirements to be changed during program
development

• (Program) requirements agreed at start of development of program

Max 1

1

1(a)(ii) Which programming language would best be suited to control the production
line // Which programming language would best suit the problem being solved

1

1(b)(i) Examples include:

• Change to (production line) requirements

• New technology / hardware available (to control production line)

• Changes made to library modules used

• Change in relevant legislation

Max 3

3

1(b)(ii) Perfective // Corrective 1

1(c) 1 mark for each correct row

Expression Data type

RIGHT(MachineCode, 4) STRING

Speed * 2.5 REAL

NOT Status BOOLEAN

IS_NUM(Check) BOOLEAN

4

1(d)(i) Two / 2 1

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 7 of 20

Question Answer Marks

1(d)(ii) 1000 1

1(d)(iii) DECLARE Product : ARRAY [0:99, 0:9] OF INTEGER

1 mark for correct upper and lower bound

• [0:99, 0:9

1 mark for all other parts of declaration

DECLARE Product : ARRAY [0:99, 0:9] OF INTEGER

2

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 8 of 20

Question Answer Marks

2(a) Mark as follows:

1. To increase the level of detail of the algorithm // To break the problem / task

into smaller steps …
2. … until steps can be directly translated into lines of code // from which it

can be programmed

2

2(b)(i) One mark for each of set test values

Hours worked between 1 and 40 inclusive

Sales value = 2000
Bonus Pay: 0

Hours worked above 40

Sales value = 2000
Bonus Pay: 10

Hours worked between 1 and 40 inclusive

Sales value  2000
Bonus Pay: 50

Hours worked above 40
Sales value above 2000
Bonus Pay: 100

max 2

2

2(b)(ii) One mark per point

• Simple modules are written to replace each of the unfinished modules.

• Each simple module will return an expected value / will output a message
to show it has been called.

2

2(b)(iii) One mark for naming type of error and one mark for corresponding
description

Type of error: Logic (error)
Description: Where the program does not behave as expected / Does not

give expected result / An error in the logic of the algorithm

Or

Type of error: Run-time (error)
Description: The program performs an illegal operation

Max 2

2

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 9 of 20

Question Answer Marks

3 Example solution

DECLARE FirstNumber : INTEGER

DECLARE SecondNumber : INTEGER

DECLARE ThirdNumber : INTEGER

FirstNumber  INT(RAND(21)) – 10

OUTPUT FirstNumber

REPEAT

 SecondNumber  INT(RAND(21)) – 10

UNTIL FirstNumber <> SecondNumber

OUTPUT SecondNumber

IF FirstNumber < 0 AND SecondNumber < 0 THEN

 ThirdNumber  INT(RAND(6)) + 30

 OUTPUT ThirdNumber

ENDIF

Mark points:

1. Declare all variables used
2. Use RAND() function with any integer parameter

3. Use INT() function with any numeric parameter

4. Conditional loop until two different random numbers are generated

5. Use INT() function using random number generated between −10 and 10

inclusive in a loop
6. Output two different random integers / numbers
7. Check if both random integers / numbers are negative
8. then output a (third) random integer / number between 30 and 35 inclusive

8

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 10 of 20

Question Answer Marks

4

One mark for each functional group as listed:
1. Initialise Index used for Number to either 1 or 0 before first loop

2. Loop 100 times
3. Input value
4. Increment array index and store value in Number array at element

referenced by array index in a loop

5. Output loop starts at last element in Number array

6. Output Number array element referenced by Index in a loop

7. Output all elements of Number array once in reverse order

Max 6

6

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 11 of 20

Question Answer Marks

5(a)

Mark as follows:

1 Mark: The three new states drawn and labelled.

1 Mark: Two of the events drawn with labels connecting correct states and
correct line direction

1 Mark: Four of the events drawn with labels connecting correct states and
correct line direction.

1 Mark: All and only six events drawn with labels connecting correct states
and correct line direction.

4

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 12 of 20

Question Answer Marks

5(b) Conditional Solution

Example Solution

DECLARE Count : INTEGER

DECLARE Line : STRING

DECLARE NextHour, Hour : STRING

OPENFILE "TimeTaken.txt" FOR READ

Count  1

READFILE "TimeTaken.txt", Line

Hour  LEFT(Line, 2)

WHILE NOT EOF("TimeTaken.txt")

 READFILE "TimeTaken.txt", Line

 NextHour  LEFT(Line, 2)

 IF NextHour = Hour THEN

 Count  Count + 1

 ELSE

 OUTPUT "Hour : ", Hour, " Total : ", Count

 Hour  NextHour

 Count  1

 ENDIF

ENDWHILE

OUTPUT "Hour : ", Hour, " Total : ", Count

CLOSEFILE "TimeTaken.txt"

Mark as follows:

1. Any Initialisation of count for number of pictures taken each hour
2. Open "TimeTaken.txt" for read and subsequently close

3. Conditional loop until EOF
4. Read a line from "TimeTaken.txt" in a loop

5. Extract Hour from line read in a loop
6. A mechanism to compare current hour extracted from file with last one

read from file in a loop
7. If hours same increment count in a loop
8. If not same output count (with a suitable message) and

 update Hour  NextHour and set Count to 1 in a loop

9. Output final Count and Hour (with a suitable message) once only

Note: max 8

8

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 13 of 20

Question Answer Marks

5(b) Alternative solution and mark scheme use of an array to hold count for each
hour
Also, for use of 24 variables and 24 selection conditions

DECLARE HoursArray[0 : 23] OF INTEGER

DECLARE Index, Hour : INTEGER

DECLARE Line : STRING

FOR Index  0 TO 23

 HoursArray[Index]  0

NEXT Index

OPENFILE "TimeTaken.txt" FOR READ

WHILE NOT EOF("TimeTaken.txt")

 READFILE "TimeTaken.txt", Line

 Hour  STR_TO_NUM(LEFT(Line, 2))

 HoursArray[Hour]  HoursArray[Hour] + 1

ENDWHILE

FOR Index  0 TO 23

 IF HoursArray[Index] <> 0 THEN

 OUTPUT "Hour : ", Index, " Total : ",

HoursArray[Index]

 ENDIF

NEXT Index

CLOSEFILE "TimeTaken.txt"

Mark as follows:

1. Initialisation of 24 array elements to 0 // Initialisation of 24 Integer variables

to 0
2. Open "TimeTaken.txt" for read and subsequently close

3. Conditional loop until EOF
4. Read a line from "TimeTaken.txt" in a loop

5. Extract Hour from line read in a loop
6. Convert Hour to an integer value in a loop
7. Increment appropriate array element / variable in a loop
8. Output of each hour and corresponding count variable (with a suitable

message) for all values where count is not zero

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 14 of 20

Question Answer Marks

6(a)(i)

Award 1 mark per region

Value Start Unused New Last Current

1043 2 8 8 –1 2 Region 1

 2 3 Region 2

 3 1 Region 3

 1 7

Region 4 7 4

4

6(a)(ii)
 Data Pointer

1 1018 1 7

2 1007 2 3

3 1010 3 1

4 1056 4 6

5 1092 5 –1

6 1062 6 5

7 1034 7 8

8 1043 8 4

9 0 9 10

10 0 10 –1

Mark as follows:

1 mark for global array Data row 8 containing the value 1043

1 mark for global array Pointer row 7 containing the value 8 and row 8

containing the value 4

1 mark for all other rows in both arrays

3

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 15 of 20

Question Answer Marks

6(b) Example answer:

The ADT is a linked list and the procedure Place()inserts / add a new node /

value into it / the linked list

Mark as follows:

1. 1 mark for identifying the ADT as a linked list
2. 1 mark for identifying operation as inserting / adding a value / node into a

linked list

2

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 16 of 20

Question Answer Marks

7(a) Example solution Conditional Loop

FUNCTION FindCustomer(CustomerID : INTEGER) RETURNS

INTEGER

 DECLARE Index : INTEGER

 DECLARE Found : BOOLEAN

 CONSTANT Unused = 99999

 CONSTANT Upper = 1000

 Found  FALSE

 Index  1

 IF CustomerID < 10001 OR CustomerID > 11000 THEN

 RETURN –1 // Out of range value for customer ID

 ENDIF

 WHILE Found = FALSE AND Loyalty[Index, 1] <> 99999

 IF Loyalty[Index,1] = CustomerID THEN

 Found  TRUE

 ELSE

 Index  Index + 1

 ENDIF

 IF Index > Upper THEN
 RETURN –1
 ENDIF

 ENDWHILE

 IF Found THEN

 RETURN Loyalty[Index, 2]

 ELSE

 RETURN –1

 ENDIF

ENDFUNCTION

Mark as follows:

1. Create function header and ending with correct parameter and return type

2. Check CustomerID is in range and if not return −1

3. (Conditional) loop iterating through each element in array
4. Check for current element in array contains required customer ID in a

loop
5. … If found set value to terminate loop
6. Terminating loop when customer ID found
7. Terminating loop when current customer ID is 99999
8. Return either loyalty points for the customer found or –1 if not found

8

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 17 of 20

Question Answer Marks

7(a) Alternative solution using FOR Loop

Example solution

FUNCTION FindCustomer(CustomerID : INTEGER) RETURNS

INTEGER

 DECLARE Index : INTEGER

 IF CustomerID < 10001 OR CustomerID > 11000 THEN

 RETURN –1 // Out of range value for customer ID

 ENDIF

 FOR Index  1 TO 1000

 IF Loyalty[Index, 1] = CustomerID THEN

 RETURN Loyalty[Index, 2]

 ENDIF

 IF Loyalty[Index, 1] = 99999 THEN

 RETURN –1

 ENDIF

 NEXT Index

ENDFUNCTION

Mark as follows:

1. Create function header and ending with correct parameter and return type
2. Check CustomerID is within range and if not return –1

3. FOR Loop
4. Loop for elements 1 to 1000 / 0 to 999
5. Check if current element in array contains required Customer ID in a loop
6. … If found correctly return loyalty points // store correct loyalty points and

return after loop
7. Check if current element in array is 99999 and return –1 / break loop in a

loop

8. return −1 if Customer ID not found

Direct access solution
Alternative solution subtracting 10000 from CustomerID

FUNCTION FindCustomer(CustomerID : INTEGER) RETURNS

INTEGER

 DECLARE Index : INTEGER

 IF CustomerID < 10001 OR CustomerID > 11000 THEN

 RETURN –1 // Out of range value for customer ID

 ENDIF

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 18 of 20

Question Answer Marks

7(a) Index = CustomerID – 10000

 IF Loyalty[Index, 1] = CustomerID THEN

 RETURN Loyalty[Index, 2]

 ENDIF

 RETURN –1

ENDFUNCTION

Mark as follows:

1. Create function header and ending with correct parameter and return type
2. Declare Index as Integer
3. Check CustomerID is less than 10001 and return –1 if it is

4. Check CustomerID is greater than 11000 and return –1 if it is

5. Calculate Index by subtracting a 10000 form CustomerID

6. Check if array contains the CusomerID

7. Return Loyalty Points if CustomerID found

8. Return –1 if not found

Binary Search Mark Scheme

Example Solution

FUNCTION FindCustomer(CustomerID : INTEGER) RETURNS

INTEGER

 DECLARE Start : INTEGER

 DECLARE End : INTEGER

 DECLARE Mid : INTEGER

 IF CustomerID < 10001 OR CustomerID > 11000 THEN

 RETURN –1 // Out of range value for customer ID

 ENDIF

 Start  1

 End 1000

 WHILE Start <= End

 Mid ← (Start + End) DIV 2

 IF Loyalty[Mid, 1] = CustomerID THEN

 RETURN Loyalty[Mid, 2]

 ELSE IF Loyalty[Mid, 1] > CustomerID THEN

 End  Mid – 1

 ELSE

 Start  Mid + 1

 ENDIF

 ENDWHILE

 RETURN –1

ENDFUNCTION

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 19 of 20

Question Answer Marks

7(a) Mark points

1. Create function header and ending with correct parameter and return type
2. Check CustomerID is within range and if not return –1

3. Conditional loop that halves array search space with each iteration
4. Check if CustomerID is stored in current array element in loop

5. Mechanism to end loop if CustomerID is found in array in a loop

6. Mechanism to end loop if CustomerID is not in array in a loop

7. If CustomerID found in array then return correct loyalty points

8. If CustomerID not in array then return –1

7(b) Example solution

PROCEDURE PointsReport()

 DECLARE Count : INTEGER

 DECLARE Index : INTEGER

 DECLARE Sum : INTEGER

 DECLARE Average : REAL

 Index  1

 Count  0

 Sum  0

 WHILE Loyalty[Index, 1] <> 99999 AND Index <= 1000

 IF Loyalty[Index, 2] >= 11 THEN

 OUTPUT Loyalty[Index, 1]

 ENDIF

 Count  Count + 1

 Sum  Sum + Loyalty[Index, 2]

 Index  Index + 1

 ENDWHILE

 Average  Sum / Count

 OUTPUT "The average points of all the customers is ",

Average

ENDPROCEDURE

Mark as follows:

1. Create procedure header and ending
2. Declare and initialise Index, Sum and Count

3. Loop through all elements in Loyalty array

4. … or terminates when column1 of Loyalty array equals 99999 in a loop

5. Check if loyalty points greater than or equal to 11 in a loop

6. If true output customer ID
7 Sum points and Increment Count in a loop

8 Calculate and output average with an appropriate message

Max 7

7

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2025

© Cambridge University Press & Assessment 2025 Page 20 of 20

Question Answer Marks

7(c)(i) An array can only store data of the same type // An array cannot store data
of different types

1

7(c)(ii) 1 mark for each point

1. a new (composite) data type / record is defined (that consists of both

INTEGER and STRING)

2. an array based on this new type is declared

Alternative

1 mark for each point

1. Converting loyalty points to string and concatenating / joining / append with

Customer ID
2. Storing concatenated string in an array of string

2

