

Cambridge IGCSE™

ADDITIONAL MATHEMATICS		0606/23
Paper 2		May/June 2025
MARK SCHEME		
Maximum Mark: 80		
I	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2025 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Annotations guidance for centres

Examiners use a system of annotations as a shorthand for communicating their marking decisions to one another. Examiners are trained during the standardisation process on how and when to use annotations. The purpose of annotations is to inform the standardisation and monitoring processes and guide the supervising examiners when they are checking the work of examiners within their team. The meaning of annotations and how they are used is specific to each component and is understood by all examiners who mark the component.

We publish annotations in our mark schemes to help centres understand the annotations they may see on copies of scripts. Note that there may not be a direct correlation between the number of annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an indication of the quality of the response.

The annotations listed below were available to examiners marking this component in this series.

Annotations

Annotation	Meaning
^	More information required
AO	Accuracy mark awarded zero
A1	Accuracy mark awarded one
A2	Accuracy mark awarded two
A3	Accuracy mark awarded three
ВО	Independent mark awarded zero
B1	Independent mark awarded one
B2	Independent mark awarded two
В3	Independent mark awarded three
BOD	Benefit of the doubt
C	Communication mark
×	Incorrect
FT	Follow through
Highlighter	Highlight a key point in the working
ISW	Ignore subsequent work
МО	Method mark awarded zero
M1	Method mark awarded one
M2	Method mark awarded two
M3	Method mark awarded three

Annotation	Meaning
MR	Misread
0	Omission
Off-page comment	Allows comments to be entered at the bottom of the RM marking window and then displayed when the associated question item is navigated to.
On-page comment	Allows comments to be entered in speech bubbles on the candidate response.
Pre	Premature rounding/approximation
SC	Special case
SEEN	Indicates that work/page has been seen
TE	Transcription error
✓	Correct
XP	Correct answer from incorrect working

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Partial Marks
1	$-2 \leqslant x \leqslant \frac{5}{4}$ mark final answer	B2	B1 for the correct critical values
2	Attempts to find $y = 4x - 5x^{-2}$	M1	at least one term correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 + 10x^{-3}$	A1	
	Correct completion to given answer $\frac{2(2x^3+5)}{x^3}$	A1	
	Alternative version		
	$\frac{dy}{dx} = \frac{12x^4 - 8x^4 + 10x}{x^4}$ or equivalent unsimplified form	(2)	M1 for an attempt at the quotient rule with correct structure $\frac{dy}{dx} = \frac{x^2(their12x^2) - (4x^3 - 5)(their2x)}{(x^2)^2}$
	Correct completion to given answer $\frac{2(2x^3+5)}{x^3}$	(A1)	
3	$\sqrt{y} = mx^3 + c \text{ soi}$	M1	
	$m = \frac{21-5}{10-2}$ oe or 2	M1	
	c = 5 - 2(2) oe or 1	M1	FT their m
	$y = (2x^3 + 1)^2$ oe, isw	A1	
	Alternative method		
	$\sqrt{y} = mx^3 + c \text{ soi}$	(M1)	
	21=10m+c and $5=2m+c$ and solves to find $m=2$ or $c=1$	(M1)	
	Finds the other unknown	(M1)	FT their m or c
	$y = (2x^3 + 1)^2$ oe, isw	(A1)	
4(a)	Range of f is equal to the domain of f oe	1	

Question	Answer	Marks	Partial Marks
4(b)	$f^2(x) = 4x - 3 \text{ soi}$	B2	B1 for correct order of composition
	Correct sketch with both intercepts indicated O $\frac{3}{4}$ x	B2	FT their (4x – 3) providing B1 has been awarded and the expression is of the form $mx + c$ B1 FT for correct sketch with one intercept correct
4(c)	[When $x = -1$] $y = 7$ [When $x = 3$] $y = 9$	B1	FT their $(4x - 3)$ providing it has been formed using a correct order of composition and the expression is of the form $mx + c$
	$a = \frac{9-7}{3+1}$ oe or 7 = -a + b and $9 = 3a + b$ and solves correctly for one unknown	M1	FT their y-coordinates
	$a = \frac{1}{2}$, $b = \frac{15}{2}$	A1	
5(a)	4π	B1	
5(b)	Correct sketch with y -intercept and asymptotes marked	3	B1 for correct shape for both sections B2 for asymptotes drawn at -2π , 2π and the <i>y</i> -intercept marked as 1; must have attempted correct shape or B1 for any two of these; must have attempted correct shape or If 0 scored then SC1 for correct graph between -2π and 2π with asymptotes marked at -2π , 2π and the <i>y</i> -intercept marked as 1

Question	Answer	Marks	Partial Marks
6(a)	8400	2	M1 for $5 \times 8 \times 7 \times 6 \times 5$ oe
6(b)(i)	3 628 800	2	M1 for 7! × 6!
6(b)(ii)	1266	2	M1 for ${}^{13}C_5 - {}^{7}C_5$
7(a)	-729 729	2	B1 for ${}^{15}C_5(x^2)^{10}\left(-\frac{3}{x^4}\right)^5$ oe
7(b)	$\frac{9(8)(7)}{6}a^3 = 7 \times \frac{9(8)}{2}a^2 \text{ oe}$	M2	M1 for $\frac{9(8)(7)}{6}a^3[x^3]$ oe or $\frac{9(8)}{2}a^2[x^2]$ oe
	a = 3 nfww	A1	
8(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x+2}\tan x + \mathrm{e}^{3x+2}\sec^2 x$	3	B1 for $\frac{d(e^{3x+2})}{dx} = 3e^{3x+2}$
			M1 for correct structure of product rule
			A1 FT their $\frac{d(e^{3x+2})}{dx} = 3e^{3x+2}$ for all other
			components of product rule correct
	Correct small changes relationship e.g. $\frac{\delta y}{h} = their \frac{dy}{dx} \Big _{x=0.1}$	M1	
	13.1 <i>h</i> or 13.07[68] <i>h</i>	A1	dep on first three marks awarded
8(b)	$y: -\frac{1}{3}\cos(3x+\pi) + c$	B2	B1 for $-\frac{1}{3}\cos(3x+\pi)$ or for
			$k\cos(3x+\pi)+c$ where $k\sin\frac{1}{3}$ or $k<0$
	$\frac{4}{3} = -\frac{1}{3}\cos\left(\frac{3\pi}{9} + \pi\right) + c$	M1	FT their k providing B1 has been awarded
	$\left[y = -\frac{1}{3}\cos\left(\frac{5\pi}{4} + \pi\right) + \frac{7}{6} = \right] \frac{7 - \sqrt{2}}{6}$ or exact equivalent	A1	
9(a)	n = 31	2	M1 for $\frac{n}{2} \{9 + 159\} = 2604$ oe
	OR $n = \frac{150 + d}{d}$		OR M1 for $159 = 9 + d(n-1)$ oe

Question	Answer	Marks	Partial Marks
	d = 5	2	M1FT for $[u_{31} =]159 = 9 + 30d$ or $\frac{31}{2} \{18 + 30d\} = 2604$ FT their derived value of n OR M1 FT for $\frac{1}{2} \left(\frac{150 + d}{d}\right) \left\{18 + \left(\frac{150 + d}{d} - 1\right)d\right\} = 2604$ FT their derived expression for n in terms of d
	$r = \frac{11}{16}$ oe, isw or 0.6875	2	M1FT $[u_{12} =] 9 + 11(their 5)$ or 64 and $[u_8 =] 9 + 7(their 5)$ or 44 soi FT their value of d
	$\left[S_6 = \frac{64(1 - 0.6875^6)}{1 - 0.6875} = \right] 183 \text{ or } 183.2 \text{ or}$ $183.17[4]$	A1	
9(b)(i)	$\cos 45^{\circ} = 0.707$ $\cos 135^{\circ} = -0.707$ therefore $-1 < \cos \theta < 1$ oe OR $-1 < \cos \theta < 1$ oe $\rightarrow 0^{\circ} < \theta < 180^{\circ}$ oe	B1	
9(b)(ii)	$\left[\frac{a}{1-r}\right] = \frac{\sin\theta}{1-\cos\theta}$	M1	
	$\frac{\sin\theta}{1-\cos\theta} \times \frac{1+\cos\theta}{1+\cos\theta}$	A1	
	$\frac{\sin\theta(1+\cos\theta)}{1-\cos^2\theta} = \frac{\sin\theta(1+\cos\theta)}{\sin^2\theta}$	A1	
	$\frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta} = \csc\theta + \cot\theta$	A1	
10(a)	[magnitude direction =] $\sqrt{20^2 + 21^2}$ oe	B1	
	[velocity vector =] $\frac{58}{29} (20\mathbf{i} + 21\mathbf{j})$	M1	Correctly written column vectors are acceptable all through Q10
	[position vector =] $-30\mathbf{j} + t(40\mathbf{i} + 42\mathbf{j}) \text{ or } (40t)\mathbf{i} + (-30 + 42t)\mathbf{j} \text{ oe}$	A 1	

Question	Answer	Marks	Partial Marks
10(b)	[direction vector =] $24\mathbf{i} + 7\mathbf{j}$ or x -component: $\cos \alpha = \frac{24}{25}$ and y -component: $\sin \alpha = \frac{7}{25}$	B1	
	[velocity vector =] $\frac{75}{\sqrt{24^2 + 7^2}} (24\mathbf{i} + 7\mathbf{j}) \text{ oe}$	M1	FT their direction vector
	72 i + 21 j oe	A1	
	[position vector =] $-10\mathbf{i} + 18\mathbf{j} + t(72\mathbf{i} + 21\mathbf{j})$ or $(-10 + 72t)\mathbf{i} + (18 + 21t)\mathbf{j}$	A1	FT their velocity vector
10(c)	Solves 40t = -10 + 72t and $-30 + 42t = 18 + 21torsolves one equation and substitutes the value of tinto the other equation$	M1	FT their position vectors of P and Q at time t
	Shows correctly that the values of t are not consistent e.g. $t = \frac{10}{32}$ and $t = \frac{48}{21}$ oe so do not collide oe	A1	
11	A correct and simplified equation e.g. $n+1 = \frac{437}{n-3}$	B2	B1 for an equation with $ \left[\frac{(n+1)!}{n!} = \right] n + 1 \text{ and } 437 $ or $ \left[\frac{(n-3)!}{(n-4)!} \text{ oe } = \right] n - 3 \text{ and } 437 $ OR for $ \frac{(n+1)!}{437(n-4)!} = \frac{n!}{(n-3)!} $
	$n^2 - 2n - 440 = 0$	B1	dep on B2
	n = 22 as only solution	B1	dep on all previous marks awarded

Question	Answer	Marks	Partial Marks
12(a)	$15(1-\sin^2(3x+1.5)) + 7\sin(3x+1.5) - 13[=0]$	M1	
	$15\sin^2(3x+1.5) - 7\sin(3x+1.5) - 2[=0]$	A1	
	$(5\sin(3x+1.5)+1)(3\sin(3x+1.5)-2)[=0]$	M1	Factorises or solves <i>their</i> 3-term quadratic in $\sin(3x + 1.5)$ dep on previous M1
	$3x + 1.5 = -0.201[3] or 3x + 1.5 = 0.729[7] or 3x + 1.5 = 2.41[1] or 3x + 1.5 = sin-1 \left(their - \frac{1}{5} \right) or3x + 1.5 = sin^{-1} \left(their \frac{2}{3} \right)$	M1	dep on previous M1 FT providing $-1 \le their -\frac{1}{5} \le 1$ and/or $-1 \le their \frac{2}{3} \le 1$
	x = 0.304 or $0.3039[54]andx = -0.257$ or $-0.2567[57]and no extras$	A1	

Question	Answer	Marks	Partial Marks
12(b)	$30(\cos(3x+1.5))(-3\sin(3x+1.5)) +21\cos(3x+1.5)$ [= 0]	M2	M1 for correctly differentiating $cos(3x + 1.5)$ or $sin(3x + 1.5)$
	$(3\cos(3x+1.5))(7-30\sin(3x+1.5))[=0]$ oe	M1	FT a derivative of the form $a\cos(3x+1.5)\sin(3x+1.5) + b\cos(3x+1.5)$ [= where $a < 0$ and $b > 0$
	$3x + 1.5 = \frac{\pi}{2} \text{ or } 1.57[0] \text{ or } \cos^{-1}(0)$ or $3x + 1.5 = 0.235[5]$ or $3x + 1.5 = \sin^{-1}\left(\frac{their \ 7}{their \ 30}\right)$	M1	dep on previous M1 FT (their 3)cos(3x + 1.5) × $\{(their 7) - (their 30)\sin(3x+1.5)\}$ providing their 3 \neq 0 and their 30 > their 7
	x = 0.0236 or $0.02359[87]and x = 0.469 or 0.4686[96]and no extras$	A1	dep on all previous marks awarded
13	$4 \times 8^{2x} + 8^x - 3[=0]$ or $4 \times (2^{3x})^2 + 2^{3x} - 3[=0]$ oe	B1	
	$(4(8^x)-3)(8^x+1)$ or $(4(2^{3x})-3)(2^{3x}+1)$ oe	M1	FT their 3-term quadratic in 8^x or 2^{3^x}
	$8^x = \frac{3}{4}$ or $2^{3x} = \frac{3}{4}$ oe, nfww	A1	
	$x = \log_8(0.75)$ or $\frac{1}{3}\log_2(0.75)$ or $-0.138[34]$ oe	A1	and no other solutions