

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/33

Paper 3 Theory (Core)

May/June 2025

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

1 A list of substances is shown.

calcium
calcium oxide
carbon
carbon dioxide
chlorine
copper
gold
iodine
neon
nitrogen
oxygen
potassium
sulfur dioxide

2

Answer the following questions about these substances. Each substance may be used once, more than once or not at all.

State which substance is:

(a)	an element which forms an ion with a 3– charge	
		[1]
(b)	a transition element	
		[1]
(c)	a gas that is identified using limewater	
		[1]
(d)	approximately 78% of clean, dry air	
		[1]
(e)	used in electrical wiring	
		[1]
(f)	the least reactive metal in the list	
		[1]

[Total: 9]

2 This question is about sea water and the substances found in sea water.

(a) Table 2.1 shows the masses of the compounds present when a 2000 cm³ sample of sea water is evaporated.

Table 2.1

compound	formula	mass of compound/g
sodium chloride	NaC1	28.0
	MgSO ₄	5.5
potassium chloride	KC1	2.5
calcium carbonate	CaCO ₃	2.0

Answer these questions using the information from Table 2.1.

(i)	State the chemical name of MgSO ₄ .	
		[1]
(ii)	The total mass of compounds formed from 2000 total mass of compounds present in 800 cm ³ of	
		mass = g [1]
(iii)	Potassium chloride is soluble in water.	311
	Choose one other compound that is soluble in	water.
	Tick (✓) one box.	
	lead(II) sulfate	
	magnesium carbonate	
	silver chloride	
	sodium hydroxide	

(b) Potassium iodide is also found in sea water and contains iodide ions.

Describe a test for iodide ions.	
test	
observations	
	 [2

(c) Potassium chloride contains potassium ions.

Complete Fig. 2.1 to show:

- the electronic configuration of a potassium ion
- the charge on the ion.

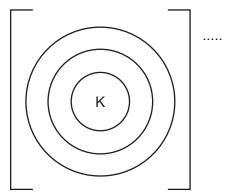


Fig. 2.1

(d) Sodium chloride is a solid at room temperature.

Describe the separation and motion of the particles in a solid.

separation

motion

[2]

6

(e) Sea water contains dissolved phosphate ions.

State **one** source of phosphate ions.

(f) Water is a simple molecular compound.

Complete the dot-and-cross diagram in Fig. 2.2 for a molecule of water.

Show outer electrons only.

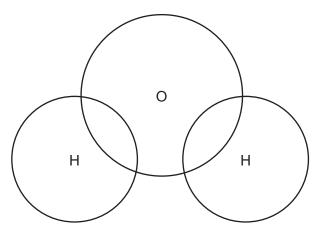


Fig. 2.2

[2]

[Total: 12]

This question is about organic chemistry. 3

(a)		etroleum is a mixture of hydrocarbons and is separated by fractional distillation in an dustrial process.					
	(i)	State whi		of hydrocarbo	ons allows them to be s	separated by fractional	
						[1]	
	(ii)	Describe	how petroleum is sep	parated into fr	actions by fractional di	stillation.	
						[2]	
	(iii)		e process that break drocarbon molecules.	s down long	chain hydrocarbon mo	olecules to form short	
						[1]	
	(iv)	Some of	the fractions obtained	from petrole	um are shown.		
		Draw a li	ne from each fraction	to its use.			
			fraction		use		
			bitumen		waxes and polishes		
						_	
			lubricating oil		making roads		
						_	
			naphtha		chemical feedstock		
						_	

7

[2]

[2]

- (b) Ethanoic acid is an organic molecule.
 - (i) Draw the displayed formula of a molecule of ethanoic acid.

8

	(ii)	Ethanoic acid reacts with sodium carbonate.	
		Name the salt produced in this reaction.	
			[1]
(c)	Etha	ane is burned in excess oxygen.	
	Nar	ne the two products of this process.	
		and	[2]
(d)	Etha	anol is another organic molecule.	
	Stat	te two ways to manufacture ethanol.	
	1		
	2		
			[2]

* 0000800000009 *

9

(e) Fig. 3.1 shows the displayed formula of an organic molecule.

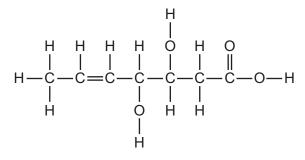


Fig. 3.1

(i)	Deduce the molecular formula of the molecule in Fig. 3.1.	
		[1]
(ii)	Explain why the molecule in Fig. 3.1 is unsaturated.	
		[1]

[Total: 15]

[3]

- 4 This question is about nitrogen and its compounds.
 - (a) (i) Explain why nitrogen is in Group V of the Periodic Table.

. [1]

(ii) Two isotopes of nitrogen are shown in Fig. 4.1.

Fig. 4.1

Complete Table 4.1 to show the number of protons, neutrons and electrons in one atom of these isotopes.

Table 4.1

	protons	neutrons	electrons
¹⁴ N			
¹⁵ N			

(b) Oxides of nitrogen are air pollutants.

(i) State **one** source of oxides of nitrogen in the air.

(ii) Ammonia reacts with oxygen to form nitrogen dioxide and water.

Complete the symbol equation for this reaction.

$$4NH_3 + 7O_2 \rightarrow 4NO_2 +H_2O$$
 [1]

(iii) State the type of bonding between the atoms in nitrogen dioxide.

.....[1]

Give a reason for your ar	iswer.	

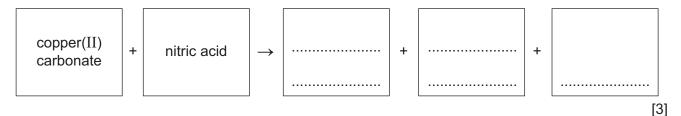
(c) A compound of nitrogen has the formula $Al(NO_3)_3$.

Complete Table 4.2 to calculate the relative formula mass of $Al(NO_3)_3$.

State whether nitrogen dioxide is an acidic or basic oxide.

Table 4.2

11


atom	number of atoms	relative atomic mass	
oxygen	9	16	9 × 16 = 144
aluminium		27	
nitrogen		14	

relative formula mass =[2]

[Total: 10]

- 5 This question is about ionic compounds and simple molecular compounds.
 - (a) Complete the word equation to show the reaction between copper(II) carbonate and nitric acid.

12

(b) Aqueous magnesium chloride is prepared by adding excess magnesium oxide powder to dilute hydrochloric acid.

Describe how to prepare a sample of pure, dry magnesium chloride crystals **after** the reaction is complete.

In your answer describe how to:

- remove the excess magnesium oxide from the reaction mixture
- crystallise the magnesium chloride
- dry the crystals.

| |
 | |
|------|------|------|------|------|------|------|------|-----------|
|
 |
| | | | | | | | | |
|
 |
| | | | | | | | | |
|
 |
|
 |
 	 . [3]							

(c) Fig. 5.1 shows the apparatus for the electrolysis of molten cobalt(II) bromide using inert electrodes.

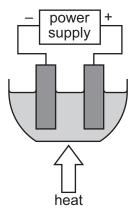


Fig. 5.1

0620/33/M/J/25

- (i) Label Fig. 5.1 to show the:
 - anode
 - electrolyte.

00000	0000013 "	

(ii) Name the products formed at the positive and negative electrodes.

(d) Table 5.1 shows some properties of five compounds, A, B, C, D and E.

Table 5.1

13

compound	electrical conductivity when molten	density in g/cm ³	melting point in °C
Α	conducts	1.85	115
В	does not conduct	2.65	1713
С	does not conduct	0.42	-182
D	conducts	2.99	1190
E	does not conduct	1.56	-101

State which two of the compounds, A, B, C, D and E, are simple molecules.

Give two reasons for your answer.

reason 1reason 2

[Total: 13]

- 6 This question is about chemical reactions and their energy changes.
 - (a) Tick (\checkmark) one box that shows a chemical change.

boiling ethanol	
decomposing vegetation	
dissolving salt	
mixing ink and water	

[1]

(b) Table 6.1 shows the results of four experiments.

Table 6.1

experiment	initial temperature/°C	final temperature/°C
1	20	14
2	18	26
3	19	25
4	17	12

(i)	State which experiment shows the greatest temperature change.	
		[1]
(ii)	State which experiment is the most endothermic.	
		F 4 5

ii) Fig. 6.1 shows an incomplete reaction pathway diagram for an exothermic reaction.

15

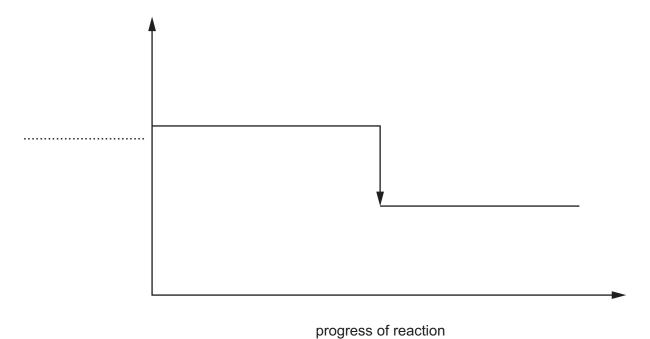
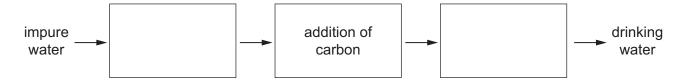


Fig. 6.1

Complete Fig. 6.1 by labelling:


- the vertical axis
- · the reactants
- · the products.

[2]

[Total: 5]

- 7 This question is about air and water.
 - (a) Water needs to be treated to make it safe to drink.

Complete Fig. 7.1 to show the three stages needed in the treatment of domestic water. The second stage has been completed.

16

Fig. 7.1

[2]

(b)	Describe	а	chemical	test	for	the	presence	of	water
-----	----------	---	----------	------	-----	-----	----------	----	-------

test	 	 	
observations	 	 	
			[2]

(c) A sample of air contains carbon dioxide and oxides of nitrogen.

State **one** harmful effect of each of these air pollutants.

oxides of nitrogen [2]

[Total: 6]

- 8 This question is about metals.
 - (a) (i) A student investigates the reaction of four different metals, A, B, C and D, with dilute sulfuric acid.

17

All other conditions are the same.

The results of the experiments are shown in Table 8.1.

Table 8.1

metal	observations
Α	lots of bubbles at room temperature
В	no bubbles
С	few bubbles on warming
D	lots of bubbles on warming

Put the metals, A, B, C and D, in order of their reactivity.

most reactive				
least reactive				
ncreasing the temperature of the acid increases the rate of reaction.				
State two other ways to increase the rate of this reaction.				

1	
	 • • • •
2	
_	••••
	[2]

(ii)

			18	1		
(b)	In a	nother experime	nt, a student adds lithiu	um to water. An alkaline	solution is formed.	
	(i)	State the colou	r seen in the flame test	for lithium ions.		
					[1]
	(ii)	State the ion th	at all aqueous alkalis c	ontain.		
					[1]
	(iii)	State the colou	r of thymolphthalein in	an aqueous alkali.		
					[[1]
(c)	Pew	ter is an alloy th	at contains tin.			
	(i)	State which on	e of these diagrams, A	, B , C or D , best represe	ents an alloy.	
		Α	В	С	D	

Suggest **one** property of pewter that makes it more useful than pure tin.

(d) Metals are good thermal conductors.

Describe **two other** physical properties that are typical of metals.

[Total: 10]

[2]

* 0000800000019 *

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

•																							
			2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson	ı
		II/			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Αt	astatine -	117	<u>s</u>	tennessine	ı
		>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	polonium —	116	^	livermonium	ı
		>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209	115	Mc	moscovium	ı
		≥		9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	F1	flerovium	ı	
		=			5	Ф	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204	113	R	nihonium	1
											30	Zu	zinc 65	48	В	cadmium 112	80	Hg	mercury 201	112	Cu	copemicium	1
											29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium	1
	Group										28	Z	nickel 59	46	Pd	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium	ı
	Gro										27	රි	cobalt 59	45	뫈	rhodium 103	77	٦	iridium 192	109	Ψ	meitnerium	ı
			- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium	ı
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium	ı
			Key		pol	sss				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium	1	
				Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Op	dubnium	ı
											22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	꿒	rutherfordium	ı
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
		=		4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium 137	88	Ra	radium	1	
		_			3	:=	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	S	caesium 133	87	Ŧ	francium	ı
																							-

20

7.1	n	lutetium	175	103	۲	lawrencium	ı
	Υp						1
69	Ш	thulium	169	101	Md	mendelevium	ı
89	Щ	erbium	167	100	Fm	ferminm	ı
29	웃	holmium	165	66	Es	einsteinium	ı
99	۵	dysprosium	163	86	రే	californium	ı
59	Д	terbium	159	26	益	berkelium	I
64	Вg	gadolinium	157	96	CB	curium	I
63	Ш	europium	152	92	Am	americium	I
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	δ	neptunium	ı
09	ρN	neodymium	144	92	\supset	uranium	238
69	Ą			91	Ра	protactinium	231
58	Ce	cerium	140	06	Ч	thorium	232
22	Га	lanthannm	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

