

Cambridge O Level

CHEMISTRY**5070/22**

Paper 2 Theory

October/November 2025

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2025 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **14** printed pages.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance

For questions that require ***n*** responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards ***n***.
- Incorrect responses should not be awarded credit but will still count towards ***n***.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first ***n*** responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Annotations guidance for centres

Examiners use a system of annotations as a shorthand for communicating their marking decisions to one another. Examiners are trained during the standardisation process on how and when to use annotations. The purpose of annotations is to inform the standardisation and monitoring processes and guide the supervising examiners when they are checking the work of examiners within their team. The meaning of annotations and how they are used is specific to each component and is understood by all examiners who mark the component.

We publish annotations in our mark schemes to help centres understand the annotations they may see on copies of scripts. Note that there may not be a direct correlation between the number of annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an indication of the quality of the response.

The annotations listed below were available to examiners marking this component in this series.

Annotations

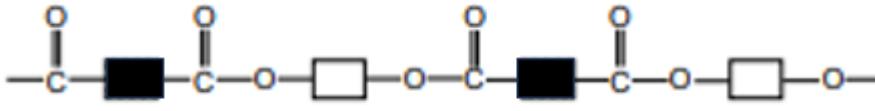
Annotation	Meaning
	correct point or mark awarded
	incorrect point or mark not awarded
	information missing or insufficient for credit
	incorrect or insufficient point ignored while marking the rest of the response
	contradiction in response, mark not awarded
	benefit of the doubt given
	error carried forward applied
	incorrect point or mark not awarded
	rounding error

Annotation	Meaning
SEEN	point has been noted, but no credit has been given or blank page seen
SF	error in number of significant figures
	used to highlight part of the response
	key point attempted / working towards marking point / incomplete answer / response seen but not credited / blank page seen
	unclear response / query

Question	Answer	Marks
1(a)(i)	B	1
1(a)(ii)	C	1
1(a)(iii)	H	1
1(a)(iv)	G	1
1(a)(v)	D	1
1(b)	E and G	1

Question	Answer	Marks
2(a)	different number of neutrons / different mass number / different nucleon number	1
2(b)	same electronic configuration	1
2(c)	$\frac{9 \times 46 + 7 \times 47 + 75 \times 48 + 9 \times 49}{100}$ <p>correct numerator (1)</p> <p>correct denominator (1)</p>	2

Question	Answer	Marks
3(a)(i)	A activation (energy) / E_a (1) B enthalpy (change) / ΔH (1)	2
3(a)(ii)	product level below reactant level	1
3(b)	‘pops’ with a lighted splint	1
3(c)	(moles of hydrogen =) $366 / 24000$ OR 0.01525 (1) (moles of Al =) 0.01525×0.67 OR 0.01017 (1) mass of Al = 0.27 (1)	3


Question	Answer	Marks
4(a)(i)	Any two from: M1 random (arrangement) (1) M2 (molecules are spread) far apart (1) M3 (molecules are) moving (very) fast (1) M4 random (motion)	2
4(a)(ii)	weak intermolecular forces	1
4(b)(i)	high melting point / high boiling point (1) conducts electricity in (aqueous) solution (1)	2
4(b)(ii)	$Li \rightarrow Li^+ + e^-$	1
4(b)(iii)	$Br_2 + 2e^- \rightarrow 2Br^-$	1

Question	Answer	Marks
4(c)	lithium chloride and bromine	1

Question	Answer	Marks																
5(a)	reaction of a (named) alkene with hydrogen	1																
5(b)	more than one oxidation state (in compounds)	1																
5(c)(i)	layers of (metal) ions can slide (over one another)	1																
5(c)(ii)	M1 different sized (metal) ions (1) M2 so layers (of metal ions) cannot slide (easily) (1)	2																
5(c)(iii)	resistant to rusting	1																
5(d)	<table border="1"> <tr> <td></td><td>nickel</td><td>hydrogen</td><td>oxygen</td></tr> <tr> <td>%</td><td>63.3</td><td>2.2</td><td>34.5</td></tr> <tr> <td>mole</td><td>1.07</td><td>2.2</td><td>2.16</td></tr> <tr> <td>mole ratio</td><td>1</td><td>2</td><td>2</td></tr> </table> nickel percentage (1) correct number of moles (1) empirical formula NiH_2O_2 (1)		nickel	hydrogen	oxygen	%	63.3	2.2	34.5	mole	1.07	2.2	2.16	mole ratio	1	2	2	3
	nickel	hydrogen	oxygen															
%	63.3	2.2	34.5															
mole	1.07	2.2	2.16															
mole ratio	1	2	2															
5(e)	M1 (position of equilibrium) moves to the right (1) M2 because more moles of gas on reactant side / fewer moles of gas on product side / greater volume of gas on reactant side / smaller volume of gas on product side (1)	2																

Question	Answer	Marks
6(a)	M1 single bond between O—O shown as a bond pair (1) M2 each oxygen to have one O—H bonds shown and all lone pairs on oxygen (1)	2
6(b)(i)	(moles of hydrogen peroxide =) $0.17 / 34$ OR 0.005 (1) 3.01×10^{21} (1)	2
6(b)(ii)	1.204×10^{22}	1
6(c)	it is a reducing agent (1) it is an oxidising agent (1)	2
6(d)	<chem>BaO2</chem>	1
6(e)(i)	particles move faster / particles have more kinetic energy (1) more successful collisions / more collisions (involve particles) with equal or more than activation energy / more effective collisions (1)	2
6(e)(ii)	lowers the activation energy	1

Question	Answer	Marks
7(a)	dicarboxylic (acid) (1) diol (1)	2
7(b)(i)	water	1

Question	Answer	Marks
7(b)(ii)	<p>ester linkages between each 'block' (1) alternating ester linkages and at least two repeat units and continuation bonds (1)</p>	2
7(b)(iii)	<p>Any two from:</p> <p>land-fills (may fill up) (1) accumulation of plastics in oceans (1) formation of toxic gases during burning (1)</p>	2
7(c)	nylon / protein	1

Question	Answer	Marks
8(a)	has a double bond between carbon atoms / contains a C=C (bond)	1
8(b)	orange (1) to colourless (1)	2
8(c)	partially dissociates / does not completely ionise	1
8(d)	carbon dioxide	1
8(e)	react with or add an alcohol (1) acid catalyst (1)	2

Question	Answer	Marks
8(f)(i)	bacterial oxidation / reaction with (acidified) potassium manganate(VII)	1
8(f)(ii)	sodium <u>ethanoate</u> and water	1

Question	Answer			Marks
9(a)	(chemically) combined with water			1
9(b)	white precipitate (1) soluble in excess resulting in colourless solution (1)			2
9(c)	white precipitate			1
9(d)	concentration	dilute	concentrated	4
	anode	oxygen (and water) / O₂ (and H₂O) (1)	chlorine / Cl₂ (1)	
	cathode	hydrogen / H₂ (1)	hydrogen / H₂ (1)	
9(e)	ions can move in aqueous / ions cannot move in solid			1

Question	Answer	Marks
10(a)(i)	<p>Any one from:</p> <p>metal (compounds) can be toxic or poisonous or cause health problems (1)</p> <p>(micro)plastics endanger aquatic life (1)</p> <p>sewage contains (harmful) microbes / sewage causes health problems e.g. diseases or named diseases / animal waste causes health problems (1)</p> <p>microbes or bacteria cause disease (1)</p> <p>nitrates or phosphates or fertilisers cause eutrophication (1)</p>	1
10(a)(ii)	(dissolved) oxygen for aquatic life / metal (compounds) that provide essential minerals for life	1
10(b)	<p>M1 sedimentation to remove (insoluble) solids / filtration to remove (insoluble) solids (1)</p> <p>M2 carbonation or carbon to remove (bad) taste or odour (1)</p> <p>M3 chlorination to kill microbes (1)</p>	3
10(c)	(anhydrous) copper(II) sulfate goes from white to blue / (anhydrous) cobalt(II) chloride goes from blue to pink	1
10(d)	(idea that) if boiling point is above 100 °C it is impure	1

Appendix – additional guidance for marking responses from candidates who have used braille papers

The table below lists modifications made on the braille paper only where a different approach to marking is required.

In all cases, use your professional judgement when marking and add a comment if required. If in doubt, contact your assessment manager.

Note that the script will be in one of the following three formats:

- Word-processed
- Handwritten by a scribe
- Braille hard copy with handwritten transcription

Question	Modification	Marks	Marking guidance
5(c)(ii)	Braille candidate will not have diagram	2	Please mark from prose.
6(a)	Braille candidate instructed to describe not draw. Please mark from description.	2	Please mark from description.
7(b)(ii)	Braille candidate is asked to describe bonds that should be shown.	2	ester bond (1), continuation bond (1)