

Cambridge O Level

CANDIDATE
NAMECENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**5070/22**

Paper 2 Theory

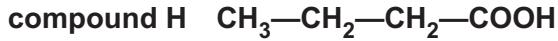
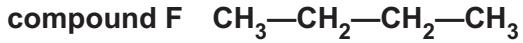
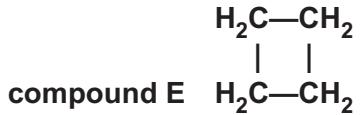
October/November 2025**1 hour 45 minutes**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.




INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **20** pages. Any blank pages are indicated.

1 Choose from the following compounds to answer the questions.

Each compound can be used once, more than once or not at all.

(a) State which compound:

(i) is methanoic acid

..... [1]

(ii) is manufactured by the hydration of ethene

..... [1]

(iii) has an empirical formula of $\text{C}_2\text{H}_4\text{O}$

..... [1]

(iv) is used to make an addition polymer

..... [1]

(v) is an ester.

..... [1]

(b) State which **two** compounds are structural isomers of one another.

..... and [1]

[Total: 6]

2 A sample of titanium found on an asteroid contains four isotopes.

Table 2.1 shows the percentage abundances of these four isotopes.

Table 2.1

isotope	percentage abundance
$^{46}_{22}\text{Ti}$	9
$^{47}_{22}\text{Ti}$	7
$^{48}_{22}\text{Ti}$	75
$^{49}_{22}\text{Ti}$	9

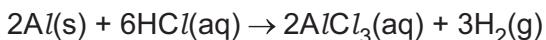
(a) Describe **one** difference between the isotopes $^{46}_{22}\text{Ti}$ and $^{47}_{22}\text{Ti}$.

..... [1]

(b) Explain why all the isotopes of titanium have the same chemical properties.

.....

..... [1]


(c) Show by calculation that the relative atomic mass of titanium for this sample is 47.84.

[2]

[Total: 4]

3 The equation for the reaction between aluminium and dilute hydrochloric acid is shown.

(a) Fig. 3.1 shows the reaction pathway diagram for this reaction.

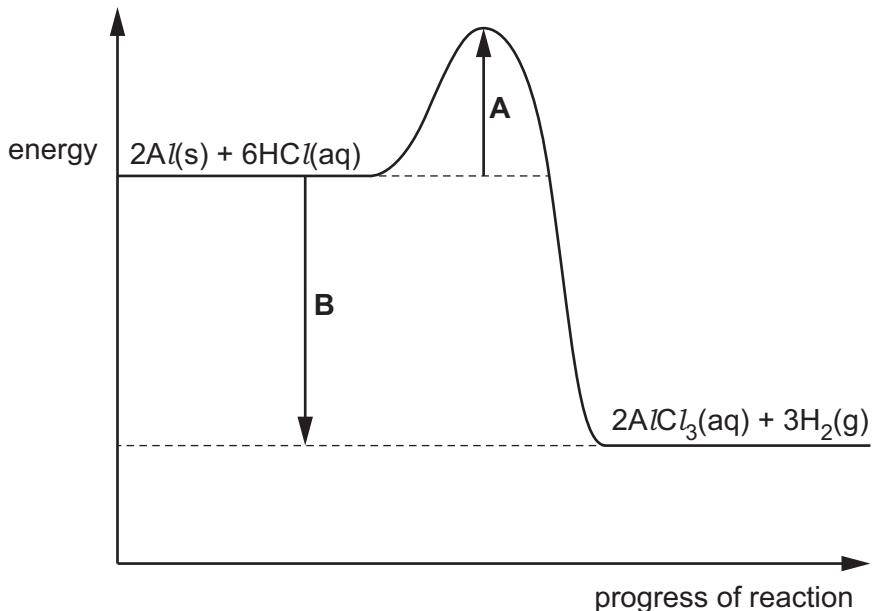


Fig. 3.1

(i) Identify the energy changes labelled **A** and **B**.

energy change **A**

energy change **B**

[2]

(ii) Use the reaction pathway diagram to explain why the reaction is exothermic.

.....
.....

[1]

(b) Describe a chemical test for hydrogen.

test

observation if hydrogen present

[1]

(c) A sample of aluminium reacts completely with dilute hydrochloric acid.

A total volume of 366 cm^3 of hydrogen, measured at r.t.p., is produced.

Calculate the mass of the sample of aluminium.

Give your answer to **two** significant figures.

mass of aluminium = g [3]

[Total: 7]

4 Fluorine, chlorine, bromine and iodine are elements in Group VII.

(a) Fluorine has a low boiling point. It is a gas at room temperature.

(i) Describe the arrangement and motion of molecules in fluorine gas.

.....
.....
.....
.....

[2]

(ii) Explain why fluorine is a gas at room temperature.

Use ideas about structure and bonding.

.....
.....

[1]

(b) Bromine reacts with lithium to make the ionic compound lithium bromide.

(i) Suggest **two** physical properties of lithium bromide.

1
2

[2]

(ii) Construct the ionic half-equation to show the formation of lithium ions from lithium atoms.

.....

[1]

(iii) Construct the ionic half-equation to show the formation of bromide ions from bromine molecules.

.....

[1]

(c) Chlorine gas is bubbled into aqueous lithium bromide. A reaction takes place.

Name the **two** products of this reaction.

.....

[1]

[Total: 8]

5 Nickel is a transition element.

(a) One of the properties of nickel is that it is a catalyst.

State a reaction that uses nickel as a catalyst.

..... [1]

(b) State one **other** chemical property of nickel that is typical of a transition element.

..... [1]

(c) The physical properties of nickel and its alloys can be explained using ideas about structure and bonding.

(i) Explain why nickel is malleable.

..... [1]

(ii) Nickel and other elements are added to iron to make the alloy stainless steel.

Explain why stainless steel is harder than either pure nickel or pure iron.

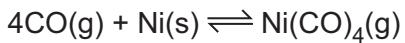
Include a labelled diagram in your answer.

.....
.....
.....
..... [2]

(iii) Stainless steel is used to make cutlery because it is hard and strong.

State one **other** property that makes stainless steel suitable to make cutlery.

..... [1]


(d) Compound **X** contains nickel, hydrogen and oxygen only.

X contains 2.2% by mass of hydrogen and 34.5% by mass of oxygen.

Calculate the empirical formula of compound **X**.

empirical formula = [3]

(e) The equation for the reversible reaction between carbon monoxide and nickel is shown.

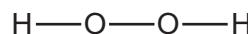
The forward reaction is exothermic.

The reversible reaction is allowed to reach equilibrium in a closed system.

Predict and explain the effect of increasing the pressure on the position of equilibrium. The temperature remains constant.

prediction

explanation


..... [2]

[Total: 11]

6 This question is about the covalent compound hydrogen peroxide.

Fig. 6.1 shows the displayed formula of hydrogen peroxide.

Fig. 6.1

(a) Draw the dot-and-cross diagram to show the electronic arrangement in a molecule of hydrogen peroxide.

Only draw the outer shell electrons of oxygen and hydrogen.

[2]

(b) A sample of hydrogen peroxide has a mass of 0.170 g.

(i) Calculate the number of molecules of hydrogen peroxide in this sample.

One mole of hydrogen peroxide contains 6.02×10^{23} molecules.

number of molecules = [2]

(ii) Calculate the total number of atoms in this sample of hydrogen peroxide.

number of atoms = [1]

(c) When aqueous hydrogen peroxide reacts with acidified aqueous potassium manganate(VII) there is a colour change from purple to colourless.

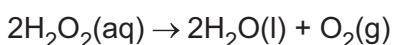
When aqueous hydrogen peroxide reacts with aqueous potassium iodide there is a colour change from colourless to brown.

Explain what these observations indicate about the chemical properties of aqueous hydrogen peroxide.

.....
.....
.....
.....

[2]

(d) Barium peroxide reacts with cold dilute sulfuric acid to produce hydrogen peroxide.


Barium peroxide contains the ions Ba^{2+} and O_2^{2-} only.

Deduce the formula of barium peroxide.

.....

[1]

(e) The equation for the decomposition of aqueous hydrogen peroxide is shown.

(i) The rate of decomposition increases as the temperature of the aqueous hydrogen peroxide increases.

Explain why.

.....
.....
.....

[2]

(ii) Manganese(IV) oxide is a catalyst for the decomposition of aqueous hydrogen peroxide.

Describe how a catalyst increases the rate of reaction.

.....
.....

[1]

[Total: 11]

7 PET is a polyester. It is a condensation polymer.

Fig. 7.1 shows the two monomers needed to make PET.

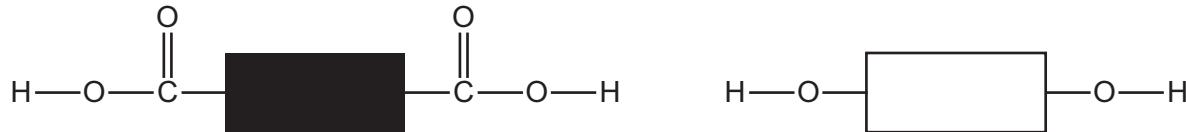


Fig. 7.1

(a) Name the **two** types of monomer shown in Fig. 7.1.

1

2

[2]

(b) The two monomers react to make PET and a small molecule.

(i) Name the small molecule.

..... [1]

(ii) Draw the structure of PET.

Your structure should show **two** repeat units.

[2]

(iii) State **two** environmental challenges caused by the disposal of plastics made of PET.

1

.....

2

.....

[2]

(c) Name **one** condensation polymer that is a polyamide.

..... [1]

[Total: 8]

8 Fig. 8.1 shows the displayed formula of an unsaturated carboxylic acid, **X**.

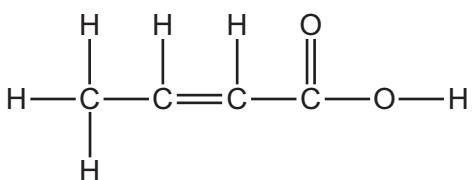


Fig. 8.1

(a) Explain why **X** is unsaturated.

.....
..... [1]

(b) Describe the observations when **X** reacts with aqueous bromine.

.....
..... [2]

(c) **X** is a weak acid.

Describe the meaning of the term weak in weak acid.

.....
..... [1]

(d) **X** reacts with aqueous sodium carbonate.

Name the gas formed in this reaction.

..... [1]

(e) Describe how an ester is prepared from **X**.

.....
.....
..... [2]

(f) Ethanoic acid is a saturated carboxylic acid.

(i) Describe how ethanoic acid is made from ethanol.

..... [1]

(ii) Dilute ethanoic acid reacts with aqueous sodium hydroxide.

Name the **two** products of this reaction.

..... [1]

[Total: 9]

9 Hydrated zinc chloride is a white solid.

(a) State the meaning of the term hydrated.

.....
.....

[1]

(b) Aqueous ammonia is added dropwise until in excess to a small volume of aqueous zinc chloride.

Describe the observations during this addition.

.....
.....

[2]

(c) Describe the observations when aqueous silver nitrate is added to aqueous zinc chloride.

.....

[1]

(d) Dilute and concentrated aqueous zinc chloride are electrolysed separately using carbon electrodes.

Complete Table 9.1.

Table 9.1

	dilute aqueous zinc chloride	concentrated aqueous zinc chloride
product at anode		
product at cathode		

[4]

(e) Explain why aqueous zinc chloride conducts electricity but solid zinc chloride does **not** conduct electricity.

.....
.....
.....

[1]

[Total: 9]

DO NOT WRITE IN THIS MARGIN

10 Water is an important part of the environment.

(a) Rivers and lakes are natural sources of water.

(i) Name **one** substance in river water that may be harmful.

Explain why this substance may be harmful.

substance

explanation

.....

[1]

(ii) Name **one** substance in river water that is beneficial.

Explain why this substance is beneficial.

substance

explanation

.....

[1]

(b) Describe the **three** processes involved in the treatment of water for the domestic water supply.

State the reason why each process is used.

process 1

reason

.....

process 2

reason

.....

process 3

reason

.....

[3]

(c) Describe a qualitative chemical test to show the presence of water.

chemical test

observation

[1]

(d) Explain how the purity of water is tested by measuring its boiling point.

..... [1]

[Total: 7]

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

I		II		Group																															
				I				II				III				IV		V		VI		VII		VIII											
				Key				1 H																											
3	4	Be	beryllium 9	Li	lithium 7	Sc	scandium 45	Ti	titanium 48	V	vanadium 51	Cr	chromium 52	Mn	manganese 55	Fe	iron 56	Co	cobalt 59	Ni	nickel 59	Zn	zinc 65	Ge	germanium 73	As	arsenic 75	Se	selenium 79	Br	bromine 80	Kr	krypton 84		
11	12	Mg	magnesium 24	Na	sodium 23	Ca	calcium 40	Sc	scandium 45	Ti	titanium 48	V	vanadium 51	Cr	chromium 52	Mn	manganese 55	Fe	iron 56	Co	cobalt 59	Ni	nickel 59	Zn	zinc 65	Ge	germanium 73	As	arsenic 75	Se	selenium 79	Br	bromine 80	Kr	krypton 84
19	20	K	potassium 39	Ca	calcium 40	Sc	scandium 45	Ti	titanium 48	V	vanadium 51	Cr	chromium 52	Mn	manganese 55	Fe	iron 56	Co	cobalt 59	Ni	nickel 59	Zn	zinc 65	Ge	germanium 73	As	arsenic 75	Se	selenium 79	Br	bromine 80	Kr	krypton 84		
37	38	Rb	rubidium 85	Sr	strontium 88	Y	yttrium 89	Zr	zirconium 91	Nb	niobium 93	Tc	molybdenum 96	Mo	tantalum 96	Ru	ruthenium 101	Rh	rhodium 103	Pd	palladium 106	Ag	silver 108	Cd	cadmium 112	In	indium 115	Sn	tin 119	Te	antimony 122	I	iodine 128	Xe	xenon 131
55	56	Cs	caesium 133	Ba	barium 137	Hf	hafnium 178	Ta	tantalum 181	W	tungsten 184	Re	rhenium 186	Os	osmium 190	Ir	iridium 192	Pt	platinum 195	Au	gold 197	Hg	mercury 201	Tl	thallium 204	Pb	bismuth 207	Bi	bismuth 209	Po	polonium –	At	astatine –	Rn	radon –
87	88	Fr	francium –	Ra	radium –	Rf	rutherfordium –	Db	dubnium –	Sg	seaborgium –	Bh	bohrium –	Hs	hassium –	Mt	meitnerium –	Ds	darmstadtium –	Rg	roentgenium –	Cn	copernicium –	F1	florium –	Mc	moscovium –	Lv	livemorium –	Ts	tennessine –	Og	oganesson –		

57	58	Ce	cerium 140	Pr	praseodymium 141	Nd	neodymium 144	Pm	promethium –	Sm	samarium 150	Eu	europium 152	Gd	gadolinium 157	Dy	dysprosium 163	Tb	terbium 159	Ho	holmium 165	Er	erbium 167	Tm	thulium 169	Yb	ytterbium 173	Lu	lutetium 175
89	90	Th	thorium 232	Pa	protactinium 231	Np	neptunium 238	U	uranium 238	Pu	plutonium –	Am	americium –	Cm	curium –	Bk	berkelium –	Cf	californium –	Es	einsteiniun –	Fm	fermium –	Md	merdeleium –	No	nobelium –	Lr	lawrencium –

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

