

Cambridge O Level

CANDIDATE
NAME

--	--	--	--	--

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY

5070/32

Paper 3 Practical Test

October/November 2025

1 hour 30 minutes

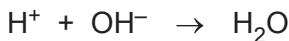
You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION


- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has **12** pages. Any blank pages are indicated.

1 You are going to measure the temperature changes when an acid neutralises aqueous potassium hydroxide.

The ionic equation for the reaction is shown.

The reaction is exothermic.

The temperature changes can be used to determine the concentration of hydrogen ions in an acid.

X is 1.6 mol/dm³ potassium hydroxide

Y is an acid of concentration 1.0 mol/dm³

(a) Read all the instructions carefully before starting the experiment.

All temperatures and temperature changes should be recorded to +/– 0.5 °C.

- step 1. Fill the burette with **Y**.
- step 2. Stand a plastic cup inside a beaker.
- step 3. Use a volumetric pipette to put 25.0 cm³ of **X** into the plastic cup.
- step 4. Measure the initial temperature of **X** and record it in Table 1.1.
- step 5. Add 5.0 cm³ of **Y** from the burette to the plastic cup.
- step 6. Stir the mixture for 30 seconds and record in Table 1.1 the temperature of the mixture.
- step 7. Repeat steps 5 and 6 until a total of 40.0 cm³ of **Y** has been added.

Subtract the initial temperature of **X** from each temperature recorded to determine the temperature change.

Complete Table 1.1. with these temperature changes.

Table 1.1

volume of Y /cm ³	temperature/ °C	temperature change/ °C
0.0		0.0
5.0		
10.0		
15.0		
20.0		
25.0		
30.0		
35.0		
40.0		

[7]

(b) Plot a graph of the temperature change (y-axis) against the volume of Y (x-axis) on Fig. 1.1.

Draw a line of best fit through the points where the temperature change is increasing.

Draw a line of best fit through the points where the temperature change is decreasing.

Extend both lines so that they cross.

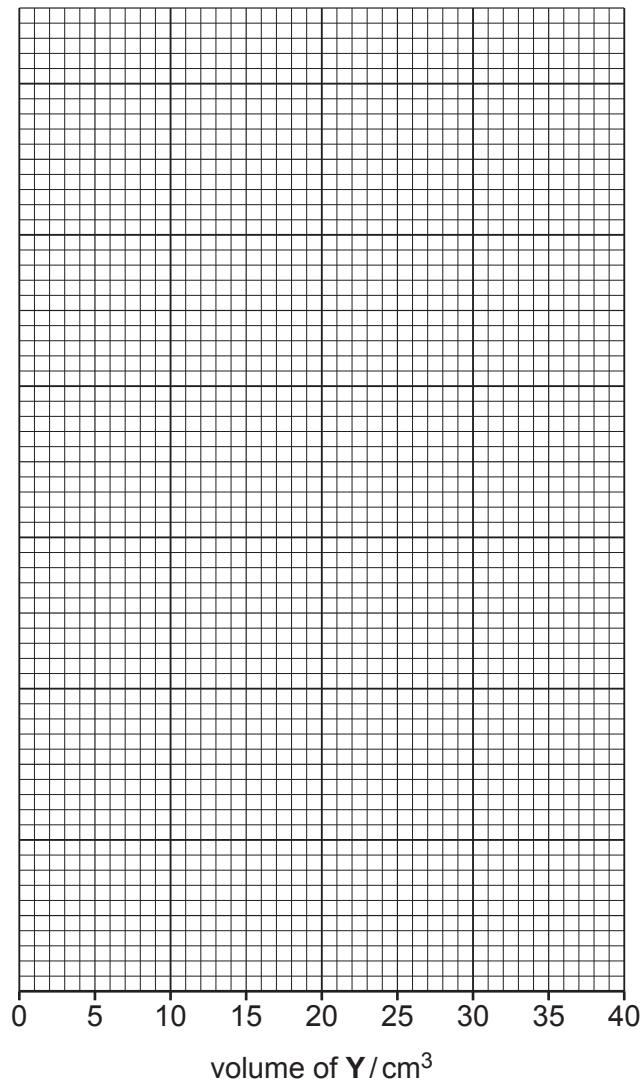


Fig. 1.1

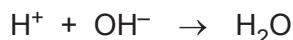
[5]

(c) Find the point on the graph where the two lines cross.

Determine the volume of Y at this point.

volume of Y cm³ [1]

(d) **X** is 1.6 mol/dm³ potassium hydroxide.


The formula of potassium hydroxide is KOH.

Calculate the number of moles of hydroxide ions, OH⁻, in 25.0 cm³ of **X**.

number of moles [1]

(e) The volume of **Y** in (c) is the volume needed to completely neutralise 25.0 cm³ of **X**.

Use your answers to (c) and (d) to calculate the concentration of hydrogen ions, H⁺, in **Y**.

concentration mol/dm³ [1]

(f) Suggest why 25 cm³ of **X** is measured using a volumetric pipette and **not** a measuring cylinder.

.....
..... [1]

(g) Suggest why the mixture is stirred in step 6.

.....
..... [1]

[Total: 17]

Question 2 starts on page 6.

2 You are provided with aqueous solution **P** and aqueous solution **Q**.

You will do a series of tests using **P** and **Q**.

Tests using solution **P**

Record your observations for each of these tests.

(a) Put 3 cm depth of dilute hydrochloric acid in a test-tube.

Dip a wooden splint or flame test wire into this test-tube.

Place the damp end of the wooden splint or flame test wire into **P**.

Place the damp end of the wooden splint or flame test wire into the blue flame of a Bunsen burner with the air-hole open.

(i) Record the first flame colour seen.

..... [1]

(ii) State why a yellow flame is **not** used.

..... [1]

(b) To 1 cm depth of **P** in a test-tube, add aqueous sodium hydroxide drop by drop until a change is seen.

Then add excess aqueous sodium hydroxide.

observations

..... [2]

(c) To 1 cm depth of **P** in a test-tube, add 1 cm depth of aqueous ammonia.

observations

..... [1]

(d) Identify the cation in **P**.

cation [1]

Tests using solution Q

You should:

- record your observations for each of these tests
- test and name any gases evolved.

(e) To a 1 cm depth of **Q** in a test-tube, add five drops of universal indicator.

observations
..... [1]

(f) To a 2 cm depth of **Q** in a test-tube, add a piece of magnesium ribbon.

observations
.....
.....

conclusion [5]

Allow the reaction to finish.

Divide the solution equally between two test-tubes for use in (g) and (h).

(g) To one of the samples from (f), add aqueous sodium hydroxide drop by drop until a change is seen.

Then add excess aqueous sodium hydroxide.

observations
..... [2]

(h) To the other sample from (f), add a few drops of dilute nitric acid followed by 1 cm depth of aqueous barium nitrate.

observations
..... [1]

(i) **Q** contains one cation and one anion.

Identify the cation and the anion in **Q**.

cation anion [2]
[Total: 17]

3 You are not expected to do any experimental work for this question.

The reaction between a metal and dilute sulfuric acid is exothermic.

Plan an experiment to determine which metal, magnesium or zinc, releases more thermal energy per gram of metal when reacting with excess dilute sulfuric acid.

You are provided with magnesium powder, zinc powder, dilute sulfuric acid and common laboratory apparatus. No other chemicals should be used.

Your plan should include:

- the apparatus needed
- the method to use and the measurements to take
- how the measurements are used to determine which metal releases more thermal energy per gram.

You may draw a diagram to help answer the question.

.....

.....

.....

[6]

Notes for use in qualitative analysis

Tests for anions

anion	test	test result
carbonate, CO_3^{2-}	add dilute acid, then test for carbon dioxide gas	effervescence, carbon dioxide produced
chloride, Cl^- [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
bromide, Br^- [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	cream ppt.
iodide, I^- [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate, NO_3^- [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate, SO_4^{2-} [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.
sulfite, SO_3^{2-}	add a small volume of acidified aqueous potassium manganate(VII)	the acidified aqueous potassium manganate(VII) changes colour from purple to colourless

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium, Al^{3+}	white ppt., soluble in excess, giving a colourless solution	white ppt., insoluble in excess
ammonium, NH_4^+	ammonia produced on warming	—
calcium, Ca^{2+}	white ppt., insoluble in excess	no ppt. or very slight white ppt.
chromium(III), Cr^{3+}	green ppt., soluble in excess	green ppt., insoluble in excess
copper(II), Cu^{2+}	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II), Fe^{2+}	green ppt., insoluble in excess, ppt. turns brown near surface on standing	green ppt., insoluble in excess, ppt. turns brown near surface on standing
iron(III), Fe^{3+}	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc, Zn^{2+}	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Tests for gases

gas	test and test result
ammonia, NH_3	turns damp red litmus paper blue
carbon dioxide, CO_2	turns limewater milky
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H_2	‘pops’ with a lighted splint
oxygen, O_2	relights a glowing splint
sulfur dioxide, SO_2	turns acidified aqueous potassium manganate(VII) from purple to colourless

Flame tests for metal ions

metal ion	flame colour
lithium, Li^+	red
sodium, Na^+	yellow
potassium, K^+	lilac
calcium, Ca^{2+}	orange-red
barium, Ba^{2+}	light green
copper(II), Cu^{2+}	blue-green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.