



# Cambridge O Level

CANDIDATE  
NAME
CENTRE  
NUMBER

|  |  |  |  |  |
|--|--|--|--|--|
|  |  |  |  |  |
|--|--|--|--|--|

CANDIDATE  
NUMBER

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|



## CHEMISTRY

5070/41

Paper 4 Alternative to Practical

October/November 2025

1 hour

You must answer on the question paper.

No additional materials are needed.

### INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

### INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [ ].
- Notes for use in qualitative analysis are provided in the question paper.

---

This document has **16** pages. Any blank pages are indicated.

1 A student separates petroleum.

Fig. 1.1 shows how the student assembles the apparatus.

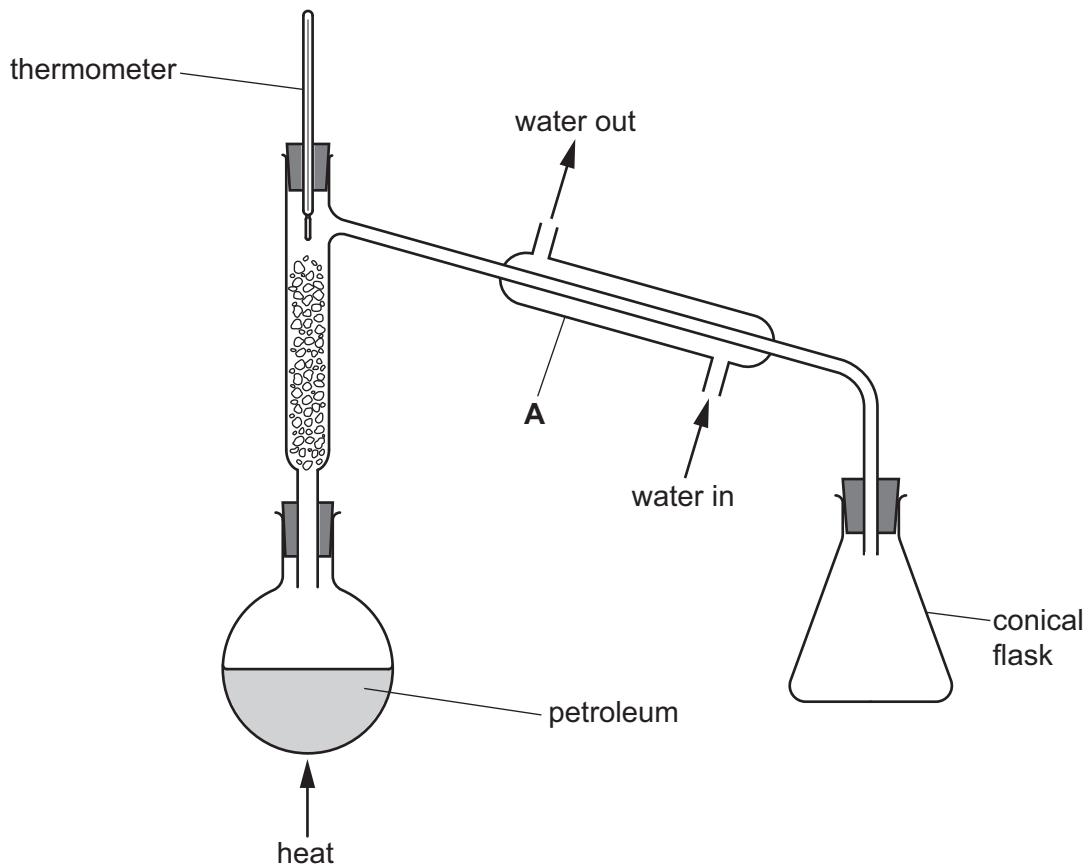



Fig. 1.1

(a) State the name of the piece of apparatus labelled **A** in Fig. 1.1.

..... [1]

(b) The student makes a mistake when assembling the apparatus.

Describe this mistake.

.....

..... [1]

(c) When it is correctly assembled, the apparatus shown in Fig. 1.1 is used to separate petroleum into useful substances.

(i) State the name of this separation process.

..... [1]

(ii) State the property of these substances that allows them to be separated.

..... [1]



(d) State the name of the piece of apparatus the student uses to safely heat the petroleum in Fig. 1.1.

Explain why this piece of apparatus is suitable.

piece of apparatus .....

explanation .....

.....

[2]

[Total: 6]



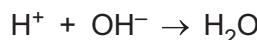
\* 0000800000004 \*

DFD



4

**BLANK PAGE**


DO NOT WRITE IN THIS MARGIN





2 A student investigates the temperature changes when an acid neutralises aqueous sodium hydroxide.

The ionic equation for the reaction is shown.



The reaction is exothermic.

The temperature change is used to determine the concentration of hydrogen ions in an acid.

**X** is 1.60 mol/dm<sup>3</sup> sodium hydroxide solution

**Y** is an acid of concentration 2.00 mol/dm<sup>3</sup>

The student:

- step 1 fills the burette with **Y**
- step 2 stands a plastic cup inside a beaker
- step 3 uses a volumetric pipette to put 25.0 cm<sup>3</sup> of **X** into the plastic cup
- step 4 measures the initial temperature of **X** and records it in Table 2.1
- step 5 adds 5.0 cm<sup>3</sup> of **Y** from the burette to the plastic cup
- step 6 stirs the mixture for 30 seconds and records in Table 2.1 the temperature of the mixture
- step 7 repeats steps 5 and 6 until a total of 40.0 cm<sup>3</sup> of **Y** is added.

Fig. 2.1 on page 6 shows two of the thermometer readings in °C during the experiment.



(a) Complete Table 2.1.

You should:

- record the student's results for  $5.0\text{ cm}^3$  and  $30.0\text{ cm}^3$  using Fig. 2.1
- subtract the initial temperature of **X** from each temperature recorded to determine the temperature change.

All temperatures and temperature changes should be recorded to  $+/- 0.5^{\circ}\text{C}$ .

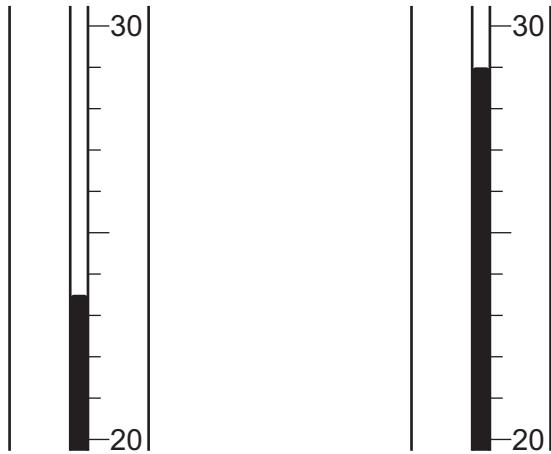



Fig. 2.1

**Table 2.1**

| volume of Y/cm <sup>3</sup> | temperature /°C | temperature change /°C |
|-----------------------------|-----------------|------------------------|
| 0.0                         | 20.5            | 0.0                    |
| 5.0                         |                 |                        |
| 10.0                        | 26.0            |                        |
| 15.0                        | 29.5            |                        |
| 20.0                        | 31.5            |                        |
| 25.0                        | 30.5            |                        |
| 30.0                        |                 |                        |
| 35.0                        | 27.5            |                        |
| 40.0                        | 26.5            |                        |

[4]



(b) Plot a graph of the temperature change (y-axis) against the volume of Y (x-axis) on Fig. 2.2.

Draw a line of best fit through the points where the temperature change is increasing.

Draw a line of best fit through the points where the temperature change is decreasing.

Extend both lines so that they cross.

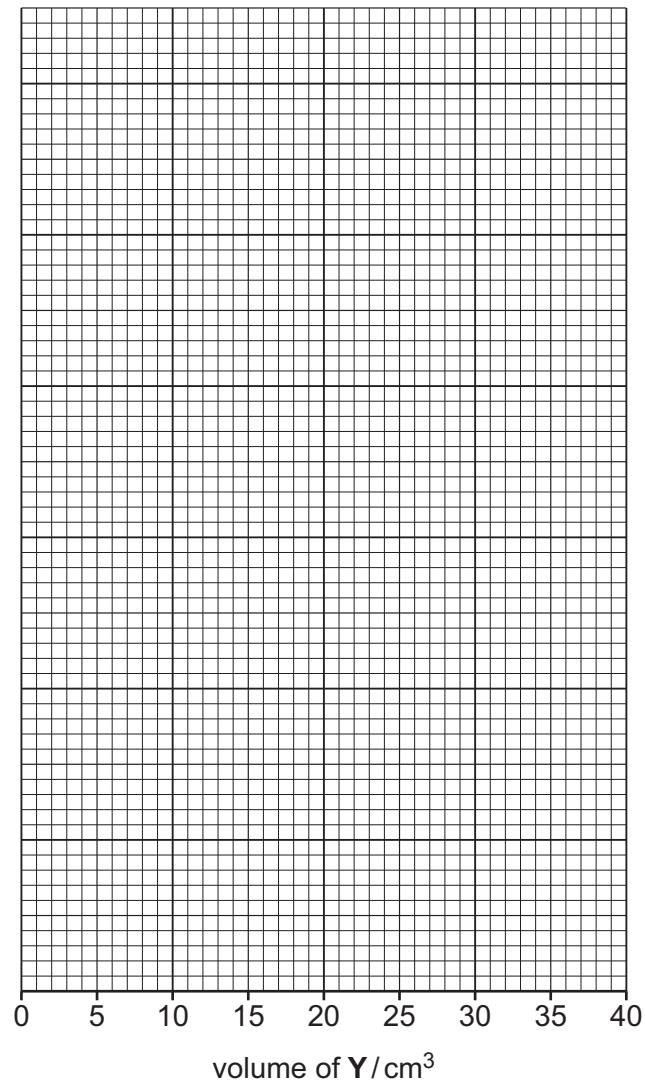



Fig. 2.2

[5]

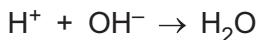
(c) Find the point on the graph where the two lines cross.

Determine the volume of Y at this point.

volume .....  $\text{cm}^3$  [1]



(d) X is 1.60 mol/dm<sup>3</sup> sodium hydroxide solution.


The formula of sodium hydroxide is NaOH.

Calculate the number of moles of hydroxide ions, OH<sup>-</sup>, in 25.0 cm<sup>3</sup> of X.

number of moles ..... [1]

(e) The volume of Y in (c) is the volume needed to completely neutralise 25.0 cm<sup>3</sup> of X.

Use your answers to (c) and (d) to calculate the concentration of hydrogen ions, H<sup>+</sup>, in Y.



concentration ..... mol/dm<sup>3</sup> [1]

(f) Suggest why Y is added to X using a burette and **not** a measuring cylinder.

.....  
..... [1]

(g) Suggest why the temperatures are recorded after 30 seconds and **not** immediately after mixing.

.....  
..... [1]

[Total: 14]



DO NOT WRITE IN THIS MARGIN



**Question 3 starts on page 10.**





3 A student does a series of tests using aqueous solution **Q** and aqueous solution **R**.

(a) Solution **Q** is acidic. Solution **Q** contains one cation and one anion.

The tests the student does on **Q** are shown in Table 3.1.

Some of the observations for these tests are also shown.

**Table 3.1**

| test number | test                                                      | observations                |
|-------------|-----------------------------------------------------------|-----------------------------|
| 1           | add five drops of universal indicator                     | colour change               |
| 2           | add a piece of magnesium ribbon                           | magnesium ribbon disappears |
| 3           | add dilute nitric acid followed by aqueous silver nitrate | white precipitate           |

(i) Describe the expected colour change in test 1.

..... [1]

(ii) A gas is produced in test 2.

Predict **one** other observation made by the student in test 2.

..... [1]

(iii) Predict the identity of the gas produced in test 2.

..... [1]

(iv) Describe a test to confirm the identity of this gas.

Include the result of a positive test.

test .....

result .....

[2]

(v) Identify the cation and the anion in **Q**.

cation ..... anion .....

[2]



(b) The tests the student does on **R** are shown in Table 3.2.

Some of the observations for these tests are also shown.

**Table 3.2**

| test number | test                                                                                  | observations                                         |
|-------------|---------------------------------------------------------------------------------------|------------------------------------------------------|
| 4           | flame test                                                                            | blue-green flame                                     |
| 5           | add aqueous ammonia drop by drop until a change is seen<br>add excess aqueous ammonia | light blue precipitate<br>blue precipitate dissolves |

(i) Describe how the student does a flame test.

.....  
.....  
.....

[2]

(ii) Describe **one** additional observation expected in test 5 based on the observations in tests 4 and 5.

.....

[1]

(iii) Describe **one** additional test to confirm the identity of the cation in **R**.

Include the result of a positive test.

test .....

.....

result .....

[3]

(iv) Identify the cation in **R**.

cation .....

[1]

[Total: 14]

4 Alcohols are used as fuels to heat water.

Plan an experiment to determine which alcohol, methanol or ethanol, releases more thermal energy per gram of alcohol burned.

Your plan should describe the use of an alcohol burner, as shown in Fig. 4.1, to heat water. You should use water, methanol, ethanol and common laboratory apparatus. No other chemicals should be used.

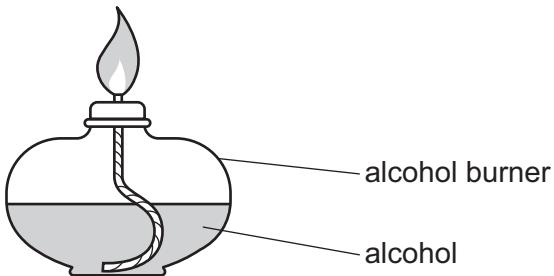



Fig. 4.1

Your plan should include:

- the additional apparatus needed
- the method to use and the measurements to take
- how the measurements are used to determine which alcohol releases more thermal energy per gram burned.

You may draw a diagram to help answer the question.

DO NOT WRITE IN THIS MARGIN





**BLANK PAGE**

DO NOT WRITE IN THIS MARGIN





## Notes for use in qualitative analysis

### Tests for anions

| anion                                        | test                                                              | test result                                                                             |
|----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| carbonate, $\text{CO}_3^{2-}$                | add dilute acid, then test for carbon dioxide gas                 | effervescence, carbon dioxide produced                                                  |
| chloride, $\text{Cl}^-$<br>[in solution]     | acidify with dilute nitric acid, then add aqueous silver nitrate  | white ppt.                                                                              |
| bromide, $\text{Br}^-$<br>[in solution]      | acidify with dilute nitric acid, then add aqueous silver nitrate  | cream ppt.                                                                              |
| iodide, $\text{I}^-$<br>[in solution]        | acidify with dilute nitric acid, then add aqueous silver nitrate  | yellow ppt.                                                                             |
| nitrate, $\text{NO}_3^-$<br>[in solution]    | add aqueous sodium hydroxide, then aluminium foil; warm carefully | ammonia produced                                                                        |
| sulfate, $\text{SO}_4^{2-}$<br>[in solution] | acidify with dilute nitric acid, then add aqueous barium nitrate  | white ppt.                                                                              |
| sulfite, $\text{SO}_3^{2-}$                  | add a small volume of acidified aqueous potassium manganate(VII)  | the acidified aqueous potassium manganate(VII) changes colour from purple to colourless |

### Tests for aqueous cations

| cation                          | effect of aqueous sodium hydroxide                                         | effect of aqueous ammonia                                                  |
|---------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| aluminium, $\text{Al}^{3+}$     | white ppt., soluble in excess, giving a colourless solution                | white ppt., insoluble in excess                                            |
| ammonium, $\text{NH}_4^+$       | ammonia produced on warming                                                | —                                                                          |
| calcium, $\text{Ca}^{2+}$       | white ppt., insoluble in excess                                            | no ppt. or very slight white ppt.                                          |
| chromium(III), $\text{Cr}^{3+}$ | green ppt., soluble in excess                                              | green ppt., insoluble in excess                                            |
| copper(II), $\text{Cu}^{2+}$    | light blue ppt., insoluble in excess                                       | light blue ppt., soluble in excess, giving a dark blue solution            |
| iron(II), $\text{Fe}^{2+}$      | green ppt., insoluble in excess, ppt. turns brown near surface on standing | green ppt., insoluble in excess, ppt. turns brown near surface on standing |
| iron(III), $\text{Fe}^{3+}$     | red-brown ppt., insoluble in excess                                        | red-brown ppt., insoluble in excess                                        |
| zinc, $\text{Zn}^{2+}$          | white ppt., soluble in excess, giving a colourless solution                | white ppt., soluble in excess, giving a colourless solution                |





## Tests for gases

| gas                           | test and test result                                                       |
|-------------------------------|----------------------------------------------------------------------------|
| ammonia, $\text{NH}_3$        | turns damp red litmus paper blue                                           |
| carbon dioxide, $\text{CO}_2$ | turns limewater milky                                                      |
| chlorine, $\text{Cl}_2$       | bleaches damp litmus paper                                                 |
| hydrogen, $\text{H}_2$        | 'pops' with a lighted splint                                               |
| oxygen, $\text{O}_2$          | relights a glowing splint                                                  |
| sulfur dioxide, $\text{SO}_2$ | turns acidified aqueous potassium manganate(VII) from purple to colourless |

## Flame tests for metal ions

| metal ion                    | flame colour |
|------------------------------|--------------|
| lithium, $\text{Li}^+$       | red          |
| sodium, $\text{Na}^+$        | yellow       |
| potassium, $\text{K}^+$      | lilac        |
| calcium, $\text{Ca}^{2+}$    | orange-red   |
| barium, $\text{Ba}^{2+}$     | light green  |
| copper(II), $\text{Cu}^{2+}$ | blue-green   |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at [www.cambridgeinternational.org](http://www.cambridgeinternational.org) after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

