

Cambridge IGCSE™

CANDIDATE
NAMECENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**0620/31**

Paper 3 Theory (Core)

October/November 2025**1 hour 15 minutes**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **20** pages.

1 Fig. 1.1 shows part of the Periodic Table.

I	II							III	IV	V	VI	VII	VIII
Li								H		C	N		He
	Mg								Al	Si		S	Cl
K		Ti			Fe			Cu	Zn				I

Fig. 1.1

Answer the following questions using only the symbols of the elements in Fig. 1.1. Each symbol may be used once, more than once or not at all.

Give the symbol of the element that:

(a) forms an ion which produces a red colour in a flame test

..... [1]

(b) is present in diamond

..... [1]

(c) forms an ion with a charge of 2–

..... [1]

(d) is extracted from bauxite

..... [1]

(e) is used in electrical wiring because of its good electrical conductivity and ductility.

..... [1]

[Total: 5]

2 The symbol for an atom of argon is shown.

(a) Complete Table 2.1 to show the number of protons and neutrons in one atom of $^{40}_{18}\text{Ar}$.

Table 2.1

number of protons	
number of neutrons	

[2]

(b) Argon is an unreactive monatomic element.

(i) Explain what is meant by the term monatomic.

..... [1]

(ii) Explain why argon is unreactive. Give your answer in terms of electronic configuration.

..... [1]

(c) At room temperature and pressure, argon is a gas.

A sample of argon is placed in a sealed syringe with a freely moving plunger.

Complete Table 2.2 to show the effect, if any, on the volume of argon when:

- the temperature of the argon is increased
- the pressure of the argon is increased.

Use the words **increases**, **decreases** or **no change** in your answer.

Table 2.2

change	effect on the volume of argon
temperature is increased	
pressure is increased	

[2]

[Total: 6]

3 (a) Table 3.1 shows the masses of ions, in mg, present in a 1000 cm^3 sample of river water.

Table 3.1

name of ion	formula of ion	mass of ion in 1000 cm^3 of river water/mg
ammonium	NH_4^+	0.5
bromide	Br^-	0.2
calcium	Ca^{2+}	1.4
hydrogencarbonate	HCO_3^-	6.0
iodide	I^-	3.2
lithium	Li^+	4.3
nitrate	NO_3^-	9.5
phosphate	PO_4^{3-}	0.7
sodium	Na^+	8.3
sulfate		0.9

Answer these questions using the information from Table 3.1.

(i) Name the positive ion that has the highest concentration.

..... [1]

(ii) State the formula of the sulfate ion.

..... [1]

(iii) Describe a test to identify the presence of iodide ions, I^- , in a sample of water.

test

.....

observations

[2]

(iv) Calculate the mass of nitrate ions, NO_3^- , in 200 cm^3 of river water.

mass = mg [1]

(b) Give the formulae of **two** ions from Table 3.1 which can be combined with potassium ions to make an NPK fertiliser.

..... and [1]

(c) Name **two** ions from Table 3.1 which lead to deoxygenation of water and damage to aquatic life.

..... and [2]

(d) The diagram in Fig. 3.1 shows the apparatus used to separate pure water from the sample of river water.

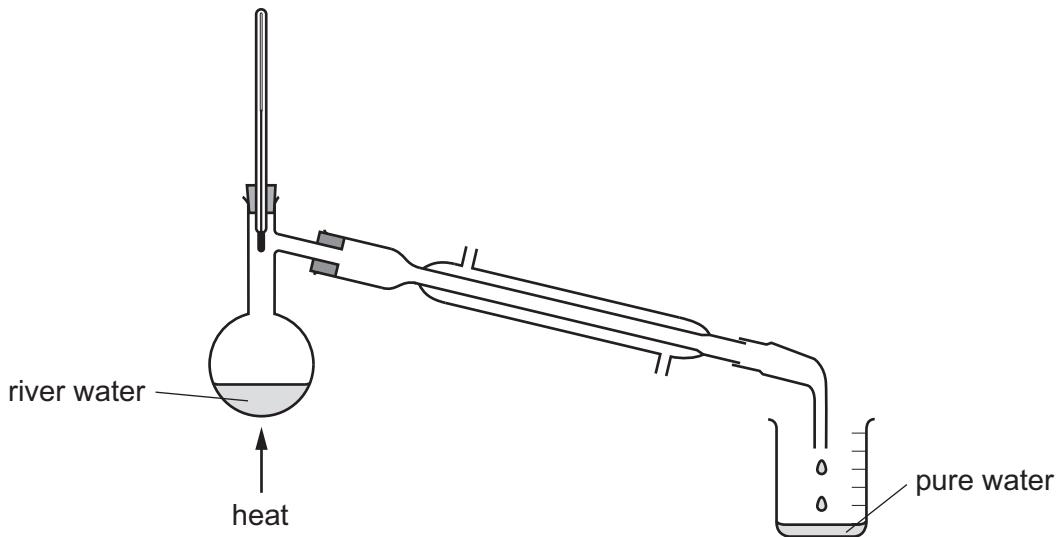


Fig. 3.1

Name the separation method shown in Fig. 3.1.

..... [1]

[Total: 9]

4 (a) Molecules of compound **C** are produced by some plants.

Fig. 4.1 shows the displayed formula of a molecule of compound **C**.



Fig. 4.1

Deduce the molecular formula of compound **C** to show the number of atoms of carbon, hydrogen and oxygen.

..... [1]

(b) On Fig. 4.1, draw a circle around the part of the molecule which shows that the molecule is unsaturated. [1]

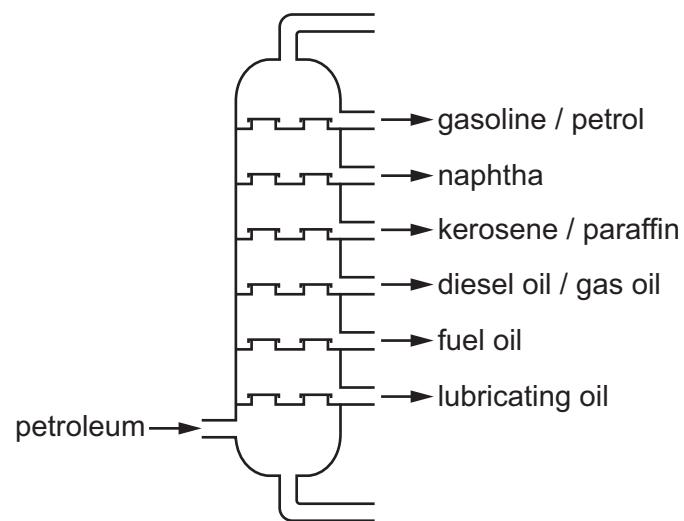
(c) A different molecule found in plants has the molecular formula $C_{11}H_{14}O_3$.

Complete Table 4.1 to calculate the relative molecular mass of $C_{11}H_{14}O_3$.

Table 4.1

type of atom	number of atoms	relative atomic mass	
carbon	11	12	$11 \times 12 = 132$
hydrogen		1	
oxygen		16	

relative molecular mass = [2]


(d) Petroleum is a mixture of hydrocarbons which can be separated into groups of compounds called fractions.

Explain what is meant by the term hydrocarbon.

..... [1]

(e) Fig. 4.2 shows the names of some of the fractions obtained from petroleum using a fractionating column.

Fig. 4.2

Using only the fractions shown in Fig. 4.2, name the fraction which contains compounds that:

(i) have the lowest boiling point

..... [1]

(ii) have the highest viscosity

..... [1]

(iii) are used for jet fuel.

..... [1]

(f) Table 4.2 shows some properties of compounds found in the naphtha fraction.

Table 4.2

name	molecular formula	melting point /°C	boiling point /°C
heptane		–90	98
octane	C_8H_{18}		125
nonane	C_9H_{20}	–54	150
decane	$C_{10}H_{22}$	–30	174
undecane	$C_{11}H_{24}$	–25	195

(i) A molecule of heptane contains seven carbon atoms.

Deduce the molecular formula of heptane.

..... [1]

(ii) Use the information in Table 4.2 to predict the melting point of octane, C_8H_{18} .

..... [1]

(g) When heated strongly in the presence of a catalyst, decane reacts to form smaller molecules.

(i) Name this type of endothermic reaction.

..... [1]

(ii) Ethene is one of the molecules formed when decane is heated strongly in the presence of a catalyst.

Draw the displayed formula of ethene. Show all the atoms and all the bonds.

[2]

(h) Ethene is polymerised to form the plastic poly(ethene).

(i) Name this type of polymerisation.

..... [1]

(ii) Describe **two** environmental challenges caused by the disposal of plastics such as poly(ethene).

1

.....

2

.....

[2]

[Total: 16]

5 This question is about elements in Group I and in Group VII of the Periodic Table and their compounds.

(a) Chlorine is in Group VII of the Periodic Table.

Give the colour and state of chlorine at room temperature and pressure.

colour

state

[2]

(b) State the use of chlorine in the treatment of the domestic water supply.

..... [1]

(c) Iodine is in Group VII of the Periodic Table.

Table 5.1 shows the melting point and the boiling point of iodine.

Table 5.1

melting point/°C	114
boiling point/°C	184

Use the information in Table 5.1 to deduce the physical state of iodine at 195 °C.

Give a reason for your answer.

physical state

reason

[2]

(d) Potassium is an element in Group I of the Periodic Table.

Elements in Group I have a low density and relatively low melting and boiling points.

State **one other** physical property of potassium.

..... [1]

(e) When a sample of potassium is added to a large container of cold water, a chemical reaction occurs.

(i) Describe what is observed when potassium is added to water.

.....
.....
.....
.....
.....
.....

[3]

(ii) The word equation for the reaction of potassium with water is shown.

Describe a test for hydrogen.

test

observations

[1]

(f) Potassium reacts with oxygen to form potassium oxide, K_2O .

Complete the symbol equation for this reaction.

[2]

(g) Solid potassium oxide, K_2O , dissolves in water to form an alkali.

Choose the pH value of the solution formed when solid potassium oxide is dissolved in water.

Draw a circle around your chosen answer.

pH 1

pH 5

pH 7

pH 12

[1]

(h) Potassium reacts with chlorine to form the ionic compound potassium chloride.

Complete the dot-and-cross diagram in Fig. 5.1 for potassium chloride to show:

- the electronic configuration for each ion
- the charge on each ion.

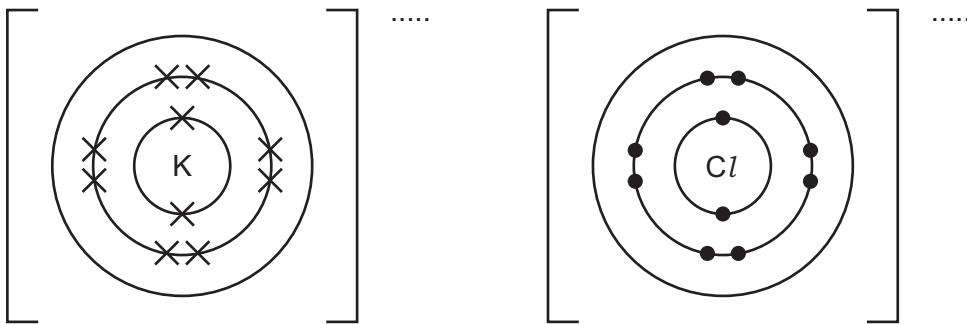


Fig. 5.1

[3]

[Total: 16]

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

6 This question is about metals.

(a) Iron is extracted from its ore using carbon (coke) and calcium carbonate in a blast furnace.

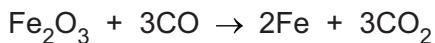
(i) Give **two** reasons why carbon is used in a blast furnace.

1

2

[2]

(ii) Slag is a waste product of this extraction.


Describe how slag is produced.

.....
.....
.....

[2]

(iii) Iron ore contains iron(III) oxide.

The equation for the extraction of iron from iron(III) oxide is shown.

Explain how this equation shows that carbon monoxide is oxidised.

.....

[1]

(b) Pure iron is less useful than its alloys such as stainless steel.

(i) Name **two** metals most commonly used in stainless steel, other than iron.

1

2

[2]

(ii) State **one** use of stainless steel.

.....

[1]

(c) Table 6.1 shows the observations when four different metals are added separately to dilute ethanoic acid.

Table 6.1

metal	observations
zinc	a few bubbles of gas given off slowly and the temperature of the mixture increases very slowly
titanium	no bubbles of gas given off and no temperature increase of the mixture
calcium	many bubbles of gas given off very quickly and the temperature of the mixture increases rapidly
magnesium	bubbles of gas given off quickly and the temperature of the mixture increases slowly

(i) Put the four metals in order of their reactivity.
Put the least reactive metal first.

least reactive → most reactive

[2]

(ii) Complete the word equation for the reaction of calcium with ethanoic acid.

[2]

[Total: 12]

7 Fig. 7.1 shows the apparatus used to electrolyse dilute sulfuric acid using inert electrodes.

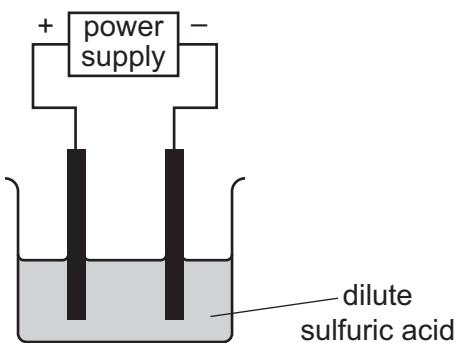


Fig. 7.1

(a) State what is meant by the term electrolysis.

.....
..... [2]

(b) Label the cathode in Fig. 7.1.

[1]

(c) Name **one** product formed at the anode.

..... [1]

(d) The inert electrodes used are made of graphite.

(i) Explain what is meant by the term inert.

..... [1]

(ii) State **one other** use for graphite.

..... [1]

(e) Excess solid copper(II) carbonate is added to dilute sulfuric acid. Aqueous copper(II) sulfate, water and carbon dioxide gas are produced.

(i) State with a reason if this is a chemical or a physical change.

.....
.....

[1]

(ii) Name a method to remove the excess copper(II) carbonate from the mixture.

.....

[1]

(iii) Name **one other** substance which can be added to dilute sulfuric acid to form aqueous copper(II) sulfate.

.....

[1]

(f) Copper(II) sulfate, CuSO_4 , exists in different forms.

Draw **one** line from each form of copper(II) sulfate to its description.

form of copper(II) sulfate

description

aqueous CuSO_4

solid CuSO_4 chemically combined with water

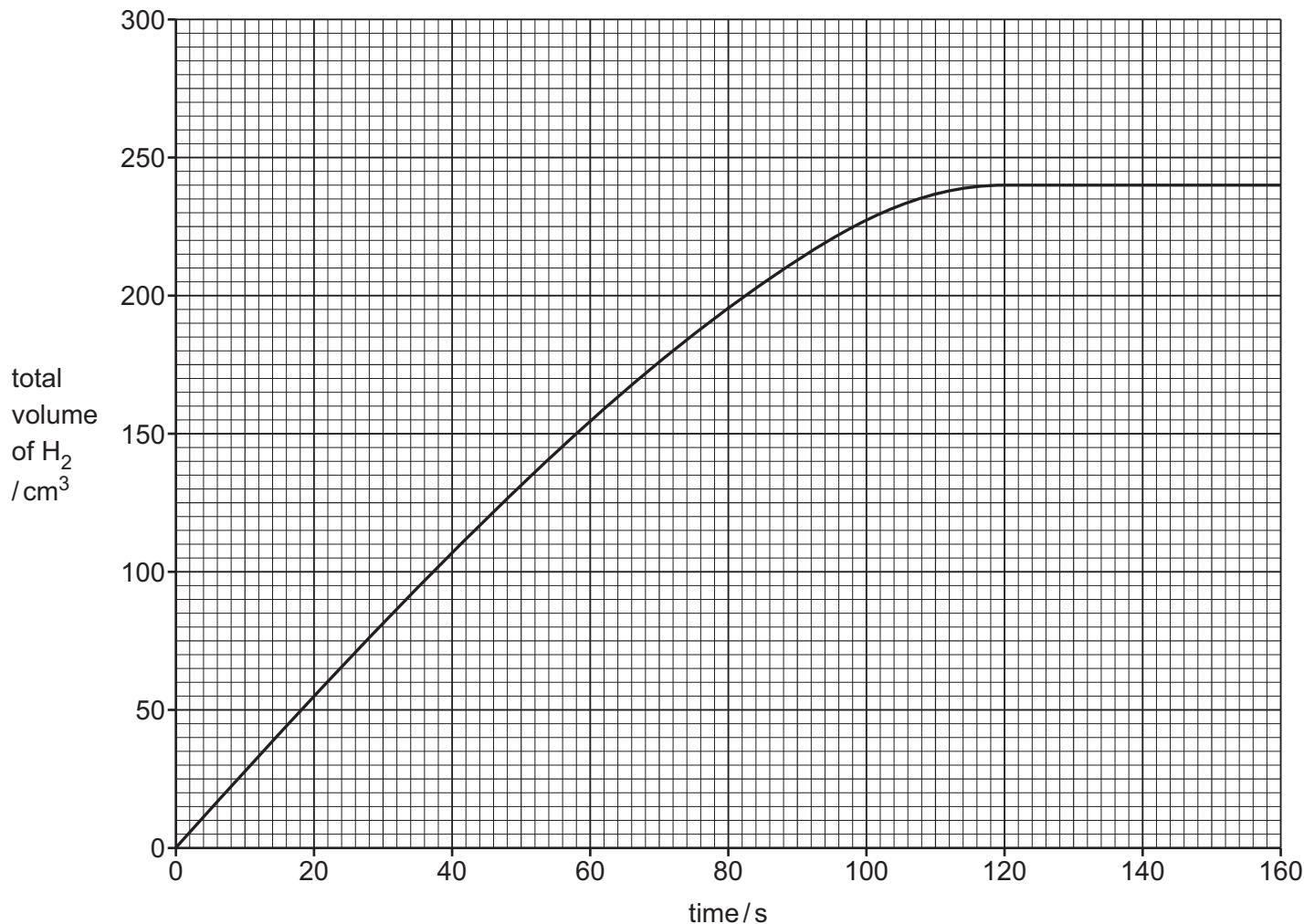
hydrated CuSO_4

CuSO_4 dissolved in water

anhydrous CuSO_4

solid CuSO_4 containing no water

[2]


[Total: 11]

8 A student investigates the reaction of small pieces of magnesium with excess dilute hydrochloric acid.

Fig. 8.1 shows the total volume of hydrogen gas, H_2 , produced as the reaction proceeds.

Fig. 8.1

(a) Use Fig. 8.1 to deduce the time taken for the reaction to finish.

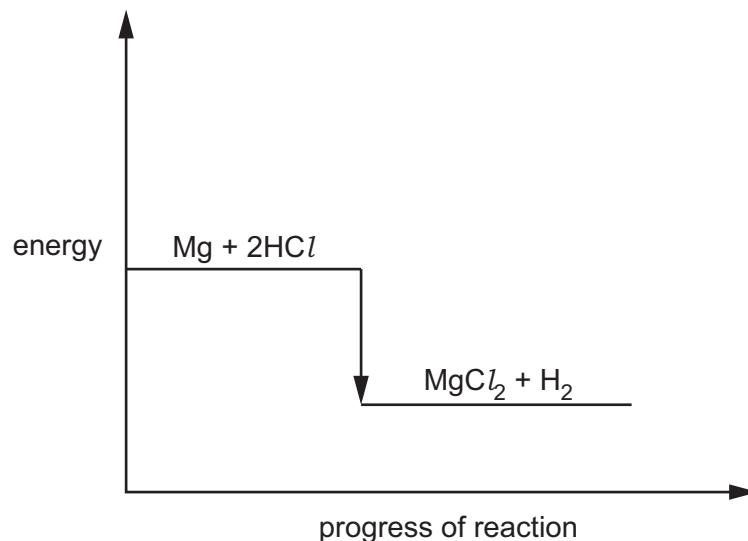
time taken for reaction to finish = s [1]

(b) The reaction is repeated using larger pieces of magnesium of the same total mass.

All other conditions stay the same.

State the effect, if any, on:

(i) the time taken for the reaction to finish


..... [1]

(ii) the total volume of H_2 produced when the reaction is complete.

..... [1]

(c) Fig. 8.2 shows the reaction pathway diagram for the reaction of magnesium with dilute hydrochloric acid.

Fig. 8.2

Deduce the type of energy change shown in the diagram in Fig. 8.2.

Explain your answer.

.....
.....
.....
.....

[2]

[Total: 5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

Group		I				II				III				IV				V				VI				VII				
		Key																												
		atomic number				atomic symbol																								
		name				relative atomic mass																								
3	Li	4	Be	beryllium	9					1	H	hydrogen	1													2	He			
																										helium	4			
7																										neon	20			
11	Na	12	Mg	magnesium	24																					Ar	40			
																										argon	40			
19	K	20	Ca	calcium	40	21	Sc	scandium	45	22	Ti	titanium	48	23	V	vandium	51	24	Cr	chromium	52	25	Mn	manganese	55	26	Fe	iron	56	
																										fluorine	19			
39	Rb	38	Sr	strontium	88	39	Y	yttrium	89	40	Zr	zirconium	91	41	Tc	technetium	93	42	Mo	molybdenum	96	43	Ru	ruthenium	101	44	Pd	palladium	103	
																										oxygen	16			
85		56	57-71	lanthanoids		72	Ta	tantalum	181	73	W	tungsten	184	74	Re	rhenium	186	75	Os	osmium	190	76	Ir	iridium	192	77	Pt	platinum	195	
																										nitrogen	14			
55	Cs	133	Caesium	barium	137	137	Hf	hafnium	178	104	Db	dubnium	—	105	106	Bh	bohrium	—	107	Sg	seaborgium	—	108	Mt	meitnerium	—	109	Ds	damaskastium	—
																										oxygen	16			
87	Fr	88	89-103	actinoids		104	Rf	rutherfordium	—	105	Db	—		106	107	Bh	—	108	Hs	hassium	—	109	Rg	roentgenium	—	110	Fm	fermium	—	
																										nitrogen	14			
																										neon	20			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
																										oxygen	16			
				</td																										

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).