

Cambridge IGCSE™

CANDIDATE
NAMECENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**0620/41**

Paper 4 Theory (Extended)

October/November 2025**1 hour 15 minutes**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **16** pages. Any blank pages are indicated.

1 Protons, neutrons and electrons are particles found in atoms.

(a) Complete Table 1.1 to show the relative mass and relative charge of a proton, a neutron and an electron.

Table 1.1

particle	relative mass	relative charge
proton		+1
neutron		
electron	$\frac{1}{1840}$	

[2]

(b) Some elements have many isotopes.

(i) Define the term isotopes.

.....
.....
.....

[2]

(ii) Explain why all isotopes of the same element have the same chemical properties.

.....
.....

[1]

(c) Complete Table 1.2.

Table 1.2

atom or ion	number of protons	number of neutrons	number of electrons
$^{40}_{18}\text{Ar}$	18		18
$^{32}_{16}\text{S}^{2-}$		16	
	22	28	20

[5]

(d) The term mass number is defined as the total number of protons and neutrons in the nucleus of an atom.

State the name of **one other** term which is defined as the total number of protons and neutrons in the nucleus of an atom.

..... [1]

(e) Calculate the number of atoms in 2.00 g of argon.

Give your answer in standard form.

number of atoms = [2]

[Total: 13]

2 Calcium is an element in Group II of the Periodic Table.

(a) Identify the element in Group II which has only five occupied electron shells.

..... [1]

(b) Name and describe the type of bonding found in elements in Group II.

name

description

.....

.....

(c) When a piece of calcium is added to some cold water containing universal indicator a reaction takes place.

(i) Give **three** observations when this reaction takes place.

1

2

3

[3]

(ii) Name the **two** products of this reaction.

..... and

[2]

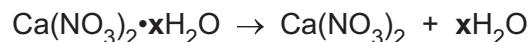
(d) Calcium burns in oxygen.

(i) State the colour of the flame.

..... [1]

(ii) Write the symbol equation for this reaction.

..... [2]


(e) Crystals of hydrated calcium nitrate contain water molecules.

The formula of hydrated calcium nitrate is $\text{Ca}(\text{NO}_3)_2 \cdot \text{xH}_2\text{O}$.
 x is a whole number.

(i) State the term given to the water molecules present in hydrated crystals.

..... [1]

(ii) When hydrated calcium nitrate is heated gently, the following reaction occurs.

A sample of hydrated calcium nitrate is heated gently. 3.28 g of $\text{Ca}(\text{NO}_3)_2$ forms and the mass of the crystals decreases by 1.44 g.

[M_r : $\text{Ca}(\text{NO}_3)_2$, 164; H_2O , 18]

Determine the value of x in $\text{Ca}(\text{NO}_3)_2 \cdot \text{xH}_2\text{O}$ using the following steps.

- Calculate the number of moles of $\text{Ca}(\text{NO}_3)_2$ that remain.

..... mol

- Calculate the number of moles of H_2O given off.

..... mol

- Determine the value of x .

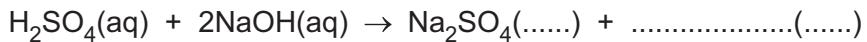
$\text{x} = \dots$

[3]

[Total: 17]

3 A student makes crystals of the salt sodium sulfate, Na_2SO_4 . The student reacts 0.200 mol/dm^3 dilute sulfuric acid, $\text{H}_2\text{SO}_4(\text{aq})$, with aqueous sodium hydroxide, $\text{NaOH}(\text{aq})$.

The student uses the following steps.


step 1 The student places 40.0 cm^3 of $\text{NaOH}(\text{aq})$ into a conical flask. This volume contains 0.0100 moles of NaOH .

step 2 The student adds a few drops of methyl orange indicator to the $\text{NaOH}(\text{aq})$ in the conical flask.

step 3 The student adds $0.200 \text{ mol/dm}^3 \text{ H}_2\text{SO}_4(\text{aq})$ to the flask until the end-point is reached.

step 4 The student transfers the mixture from the conical flask to an evaporating basin and obtains dry crystals.

(a) Complete the symbol equation for the reaction. Include state symbols.

[2]

(b) State the type of exothermic reaction taking place.

..... [1]

(c) Calculate the concentration of $\text{NaOH}(\text{aq})$ used in **step 1**.

$$\text{concentration of } \text{NaOH}(\text{aq}) = \text{..... mol/dm}^3 \quad [1]$$

(d) Name the item of apparatus the student uses to add $\text{H}_2\text{SO}_4(\text{aq})$ in **step 3**.

..... [1]

(e) Calculate the volume of $\text{H}_2\text{SO}_4(\text{aq})$, in cm^3 , added in **step 3**.

$$\text{volume of } \text{H}_2\text{SO}_4(\text{aq}) = \text{..... cm}^3 \quad [2]$$

(f) State the colour change observed in **step 3**.

from to [2]

(g) The dry crystals formed in **step 4** are coloured and **not** white. This is because the student should do an additional step between **step 3** and **step 4**.

Suggest what the student should do in this additional step to produce white crystals.

.....
.....

[1]

(h) In **step 4**, the student gently heats the solution in the evaporating basin until the solution is saturated. The student then stops heating and leaves the hot solution to cool. Crystals start to appear.

(i) Explain the term saturated solution.

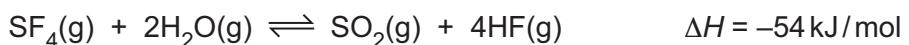
.....
.....
.....

[2]

(ii) Explain why crystals start to appear as the hot solution cools.

.....
.....

[1]


(iii) Suggest the effect, if any, on the mass of crystals collected in **step 4** if the solution in the evaporating basin is allowed to dry without gentle heating.

.....

[Total: 14]

4 Gaseous sulfur tetrafluoride, SF_4 , reacts with steam in a reversible reaction.

(a) Complete the reaction pathway diagram in Fig. 4.1 for this reaction.

Include in your diagram:

- the position and the formulae of the products
- an arrow, labelled E_a , to show the activation energy
- an arrow, labelled ΔH , to show the enthalpy change of the reaction.

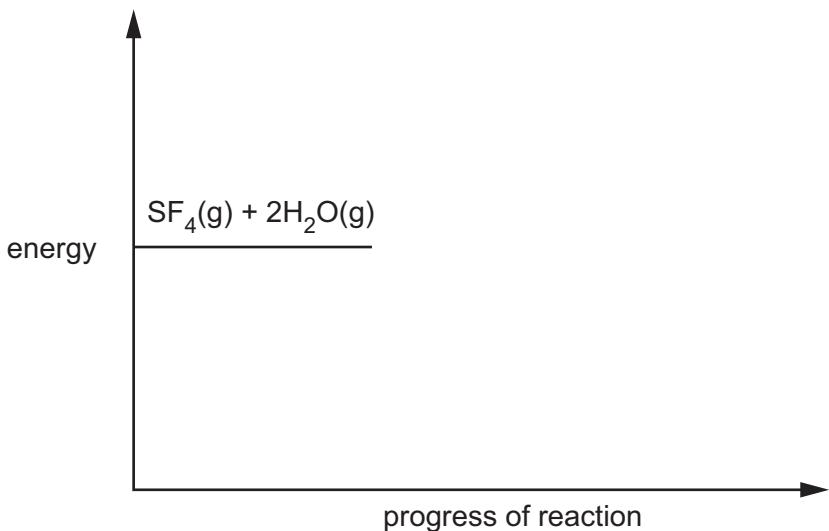


Fig. 4.1

[4]

(b) The equation for the reaction can be represented as shown in Fig. 4.2.

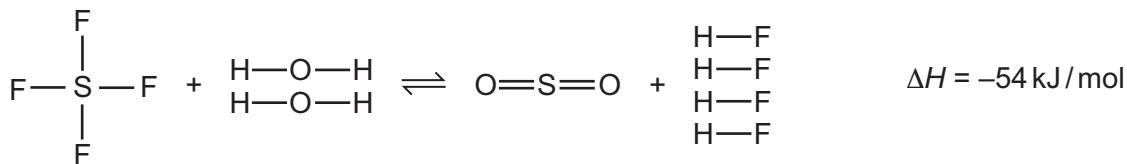


Fig. 4.2

Table 4.1 shows some bond energies.

Table 4.1

bond	S-F	O-H	H-F
bond energy in kJ/mol	330	460	570

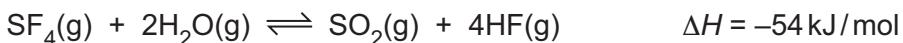
Use the bond energies in Table 4.1 and the value of ΔH of the reaction to calculate the S=O bond energy in kJ/mol.

Use the following steps.

- Calculate the energy needed to break the bonds in the reactants.

..... kJ

- Calculate the energy released when the bonds in the products form.


..... kJ

- Calculate the S=O bond energy.

..... kJ/mol
[4]

(c) The equation for the reaction is shown.

State the effect, if any, on the position of equilibrium when the following changes are made.

Give a reason for each of your answers.

- The temperature is increased.

.....
.....

- The pressure is increased.

.....
.....

- A catalyst is added.

.....
.....

[5]

(d) Explain, in terms of collision theory, why reducing the temperature decreases the rate of the reverse reaction.

.....
.....
.....
.....
.....
.....

[3]

[Total: 16]

DO NOT WRITE IN THIS MARGIN

5 This question is about the homologous series of alcohols.

(a) A homologous series is a family of organic compounds whose members have the same general formula.

(i) State the general formula for alcohols.

..... [1]

(ii) Give **one other** characteristic that is the same for all members of a homologous series.

..... [1]

(b) Ethanol can be manufactured by two methods:

- **method 1** uses glucose as the starting material
- **method 2** uses ethene as the starting material.

(i) Complete Table 5.1.

Table 5.1

	method 1 glucose as starting material	method 2 ethene as starting material
typical temperature used / °C		
two other essential conditions	1	1
	2	2

[6]

(ii) Write the symbol equation for the reaction in **method 1**.

..... [2]

(iii) Write the symbol equation for the reaction in **method 2**.

..... [2]

(c) Butane-1,4-diol has the structural formula HO—CH₂—CH₂—CH₂—CH₂—OH.

(i) Deduce the molecular formula of butane-1,4-diol.

..... [1]

(ii) Butane-1,4-diol reacts with ethanoic acid.

Determine the number of moles of ethanoic acid which react fully with **one** mole of butane-1,4-diol.

..... [1]

(d) Butanedioic acid has the structural formula HOOC—CH₂—CH₂—COOH.

(i) Deduce the empirical formula of butanedioic acid.

..... [1]

(ii) Name the gas formed when butanedioic acid reacts with sodium.

..... [1]

(e) Butane-1,4-diol can be represented as shown.

Butanedioic acid can be represented as shown.

Butane-1,4-diol reacts with butanedioic acid to form a polymer.

(i) Draw **two** repeat units of the polymer formed from the reaction of butane-1,4-diol with butanedioic acid.

Show all the atoms and all the bonds in the ester linkages.

[3]

(ii) State the type of polymerisation when butane-1,4-diol reacts with butanedioic acid.

..... [1]

[Total: 20]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

Group

		Group																		
I	II	I				II				III	IV	V	VI	VII	VIII					
3 Li	4 Be beryllium 9 7	1 H hydrogen 1				5 B boron 11				6 C carbon 12	7 N nitrogen 14	8 O oxygen 16	9 F fluorine 19	10 Ne neon 20						
11 Na	12 Mg magnesium 24 23	1 H hydrogen 1				13 Al aluminum 27	14 Si silicon 28	15 P phosphorus 31	16 S sulfur 32	17 Cl chlorine 35.5 40	18 Ar argon 40									
19 K	20 Ca calcium 40 39	21 Sc scandium 45 44				22 Ti titanium 48 47	23 V vanadium 51 50	24 Cr chromium 52 49	25 Mn manganese 55 53	26 Fe iron 56 54	27 Co cobalt 59 55	28 Ni nickel 64 60	29 Cu copper 64 61	30 Zn zinc 65 62	31 Ga gallium 70 67	32 Ge germanium 73 69	33 As arsenic 75 71	34 Se selenium 79 75	35 Br bromine 80 76	36 Kr krypton 84 80
37 Rb	38 Sr strontium 88 85	39 Y yttrium 89 88				40 Zr zirconium 91 90	41 Nb niobium 93 92	42 Mo molybdenum 96 95	43 Tc technetium – –	44 Ru ruthenium 101 100	45 Rh rhodium 103 102	46 Pd palladium 106 104	47 Ag silver 108 106	48 Cd cadmium 112 110	49 In indium 115 113	50 Sn tin 119 117	51 Sb antimony 122 120	52 Te tellurium 128 126	53 I iodine 127 125	54 Xe xenon 131 129
55 Cs	56 Ba barium 137 133	57-71 lanthanoids 178 177				72 Hf hafnium 178 177	73 Ta tantalum 181 180	74 W tungsten 184 183	75 Re rhenium 186 185	76 Os osmium 190 189	77 Ir iridium 192 191	78 Pt platinum 195 193	79 Au gold 197 195	80 Hg mercury 201 199	81 Tl thallium 204 202	82 Pb lead 207 205	83 Bi bismuth 209 207	84 Po polonium – –	85 At astatine – –	86 Rn radon – –
87 Fr	88 Ra radium – –	89-103 actinoids – –				104 Rf rutherfordium – –	105 Db dubnium – –	106 Sg seaborgium – –	107 Bh bohrium – –	108 Mt meitnerium – –	109 Ds darmstadtium – –	110 Rg roentgenium – –	111 Nh nihonium – –	112 Fl flerovium – –	113 Mc moscovium – –	114 Nh nihonium – –	115 Lr livermorium – –	116 Ts ternesine – –	117 Og oganesson – –	

57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68	Er	69	Tm	70	Yb	71	Lu		
	lanthanum		cerium		praseodymium		neodymium		promethium		samarium		europium		gadolinium		terbium		dysprosium		159		165		167		173		175		
139		140		141		144		—		150		152		157		157		159		163		165		167		169		173		175	
89	Ac	90	Th	91	Pa	92	Np	93	Pu	94	Am	95	Cm	96	Bk	97	Cf	98	Es	99	Fm	100	Md	101	No	102	Lr	103	lawrencium		
	actinium		thorium		protactinium		neptunium		plutonium		americium		curium		berkelium		—		californium		—		—		—		—		—		

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).