

Cambridge International AS & A Level

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

PHYSICS

9702/22

Paper 2 AS Level Structured Questions

October/November 2025

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].

This document has **16** pages. Any blank pages are indicated.

Data

acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$
speed of light in free space	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
elementary charge	$e = 1.60 \times 10^{-19} \text{ C}$
unified atomic mass unit	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$
rest mass of proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$
rest mass of electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
Avogadro constant	$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$
molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Boltzmann constant	$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ $(\frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ m F}^{-1})$
Planck constant	$h = 6.63 \times 10^{-34} \text{ J s}$
Stefan–Boltzmann constant	$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

Formulae

uniformly accelerated motion	$s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$
hydrostatic pressure	$\Delta p = \rho g \Delta h$
upthrust	$F = \rho g V$
Doppler effect for sound waves	$f_o = \frac{f_s v}{v \pm v_s}$
electric current	$I = Anvq$
resistors in series	$R = R_1 + R_2 + \dots$
resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

- 1 Scientists are investigating the variation in air pressure at different locations on a mountain.

- (a) The scientists take measurements of several physical quantities at each location.

Complete Table 1.1 by stating the SI base unit for each quantity and identifying with a tick (✓) whether each quantity is a scalar or a vector. Use the space for any working.

Table 1.1

quantity measured	SI base unit	scalar	vector
air temperature			
air pressure			

[2]

- (b) (i) At one location, the density of the air is 1.1 kg m^{-3} . A spherical weather balloon is filled with a gas and released from rest. The balloon has radius 0.90 m.

Calculate the upthrust acting on the balloon when it is released.

upthrust = N [2]

- (ii) Explain why an upthrust acts on the balloon.

[2]

[2]

(iii) The balloon has weight 19 N.

Calculate the magnitude of the initial acceleration of the balloon.

$$\text{acceleration} = \dots \text{ ms}^{-2} [3]$$

- (c) A quantity c relating to the motion of the balloon is calculated from three measured quantities k , F and v using the formula

$$c = \frac{2kF}{v^2}.$$

The percentage uncertainties in the measured quantities are given in Table 1.2.

Table 1.2

measured quantity	percentage uncertainty
k	5%
F	3%
v	4%

The calculated value of c is 1.8.

Determine the absolute uncertainty in c .

$$\text{absolute uncertainty} = \dots [2]$$

[Total: 11]

- 2 A spacecraft in deep space uses jets of hot gas from its thrusters to change its velocity. Fig. 2.1 shows a side view of the spacecraft and some of its thrusters.

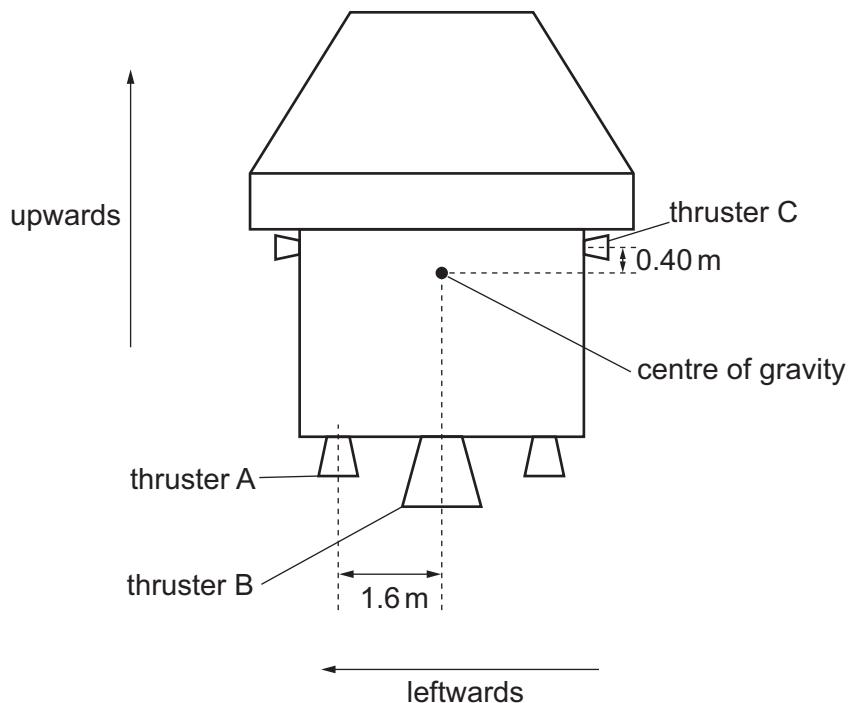


Fig. 2.1 (not to scale)

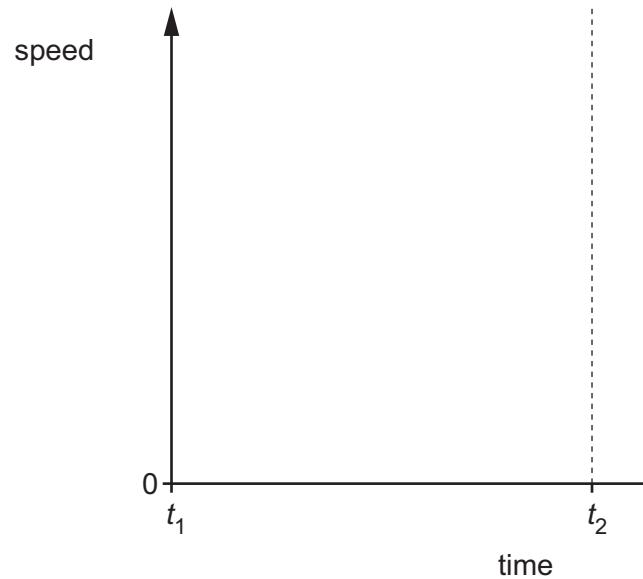
Thruster A is a distance of 1.6 m leftwards from the centre of gravity of the spacecraft. Thruster C is a distance of 0.40 m upwards from the centre of gravity of the spacecraft.

Thrusters A and B can produce forces on the spacecraft in the upwards direction only.
 Thruster C can produce a force on the spacecraft in the leftwards direction only.
 All the thrusters shown produce forces entirely in the same plane as the centre of gravity.

- (a) (i) Thruster A is activated, producing a force of 60 N upwards on the spacecraft. Thruster C is also activated, producing a force of 220 N in the leftwards direction on the spacecraft.

Calculate the resultant moment due to these forces about the centre of gravity.

$$\text{resultant moment} = \dots \text{Nm} \quad [2]$$


- (ii) State and explain whether the forces from A and C are a couple.

.....

 [1]

- (b) Thrusters A and C are now switched off and the spacecraft is stationary. Thruster B is activated at time t_1 , producing a constant force on the spacecraft until the fuel runs out at time t_2 . As the fuel is used, the total mass of the spacecraft decreases.

On Fig. 2.2, sketch the variation of speed of the spacecraft with time from t_1 to t_2 .

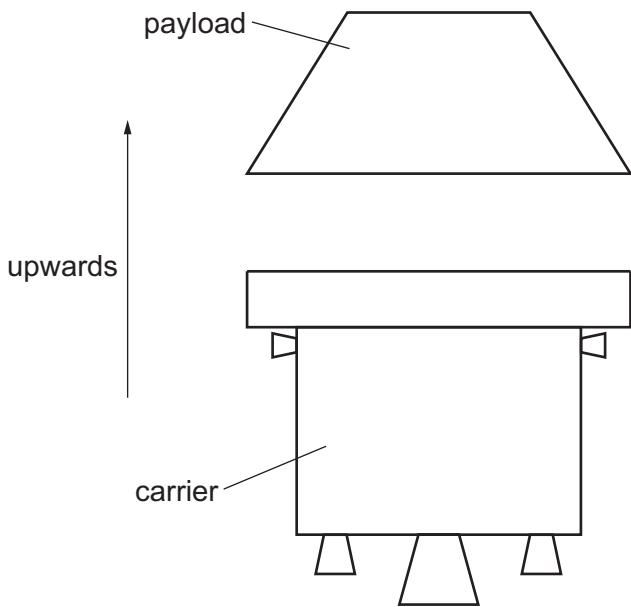


Fig. 2.2

[2]

- (c) The spacecraft now splits apart into a carrier and a payload as shown in Fig. 2.3.

Fig. 2.3

During the split, an average force of 5500 N acts on the payload for a time of 0.36 s . The velocity of the payload increases by 8.5 m s^{-1} in the upwards direction.

The combined mass of the carrier and payload is $2.5 \times 10^3\text{ kg}$.

- (i) State the principle of conservation of momentum.

.....
.....
.....

[2]

- (ii) Show that the mass of the payload is 230 kg .

[2]

(iii) Calculate the magnitude of the change in velocity of the carrier.

change in velocity = ms^{-1} [3]

[Total: 12]

- 3 A spring is fixed at one end and attached to the frame of a pulley at the other end. A cable is passed around the wheel of the pulley. The spring is stretched to a fixed length using the cable and pulley.

Fig. 3.1 shows the view from above of the spring, cable and pulley.

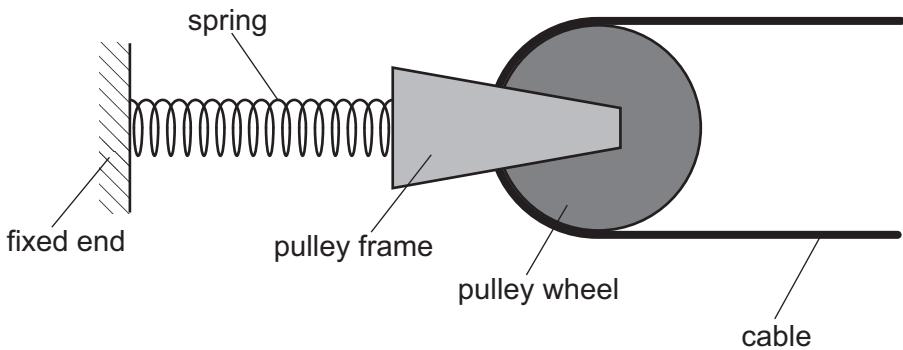


Fig. 3.1

The spring obeys Hooke's law and has a spring constant k of 250 N m^{-1} . A force F acts on the spring. The tension in the cable is T . The pulley is in equilibrium.

- (a) On Fig. 3.2, draw labelled arrows to show the directions of the forces acting on the pulley.

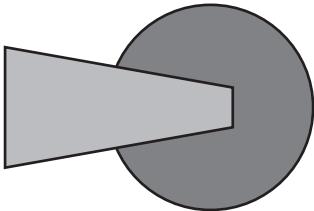


Fig. 3.2

[2]

- (b) The force F is 110 N.

- (i) Determine T .

$$T = \dots \text{ N} \quad [1]$$

- (ii) Calculate the extension of the spring.

extension = m [2]

- (c) A second identical spring with the same spring constant of 250 N m^{-1} is now also connected to the pulley, as shown in Fig. 3.3.

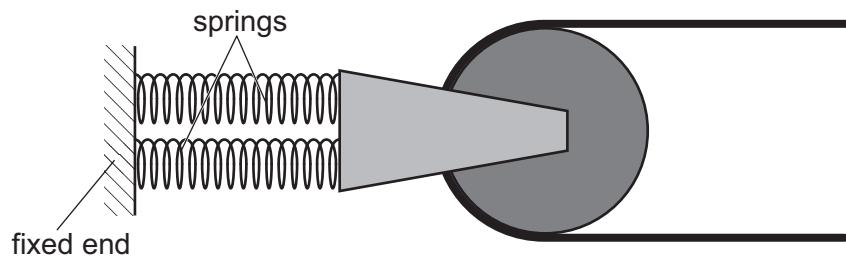


Fig. 3.3

The tension in the cable is kept the same. The pulley is again in equilibrium.

- (i) Determine the extension of the springs.

extension = m [2]

- (ii) The elastic potential energy stored in the spring in Fig. 3.1 is E_1 . The **total** elastic potential energy stored in the two springs in Fig. 3.3 is E_2 .

Calculate the ratio $\frac{E_1}{E_2}$.

ratio = [2]

[Total: 9]

- 4 A laser emits visible light of a single frequency in a vacuum. The light is incident normally on a double slit and then forms a pattern of bright and dark fringes on a screen, as shown in Fig. 4.1.

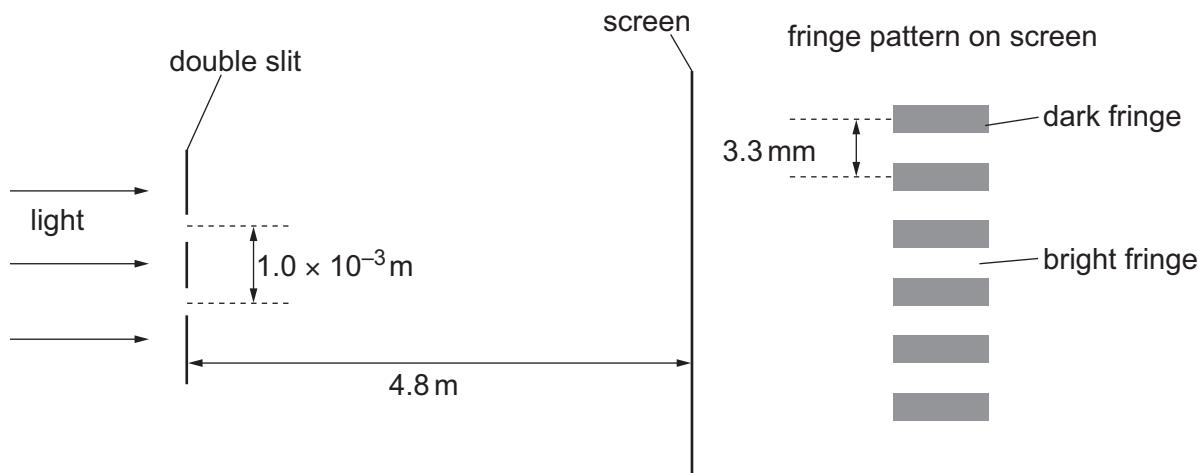


Fig. 4.1 (not to scale)

The separation of the slits is $1.0 \times 10^{-3} \text{ m}$. The distance from the slits to the screen is 4.8 m. The distance between the centres of adjacent dark fringes on the screen is 3.3 mm.

- (a) Explain how the pattern of bright and dark fringes is formed.

.....

 [3]

- (b) Calculate the frequency of the light emitted by the laser.

frequency = Hz [4]

- (c) The double slit is removed. A second laser is placed beside the first laser. The second laser produces visible light of a different frequency from that of the first laser. The beams of light from the two lasers overlap on the screen.

Explain why a steady pattern of bright and dark fringes is **not** formed on the screen.

.....
.....

[1]

[Total: 8]

- 5 Fig. 5.1 shows a circuit containing a battery, two fixed resistors X and Y, and a light-dependent resistor (LDR) Z.

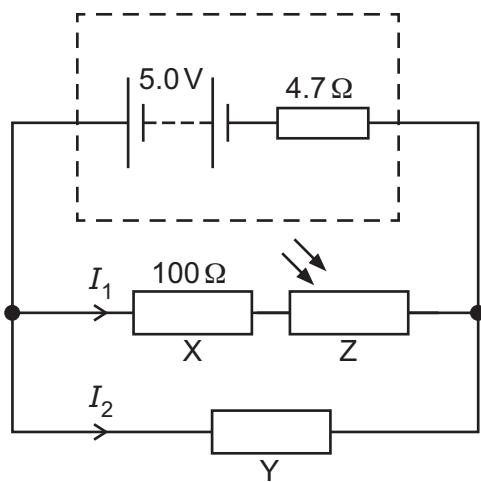


Fig. 5.1

The battery has electromotive force (e.m.f.) 5.0 V and internal resistance 4.7Ω . The current in X is I_1 and the current in Y is I_2 .

The resistance of X is 100Ω . The resistance of Z varies with the intensity of light incident on it as shown in Fig. 5.2.

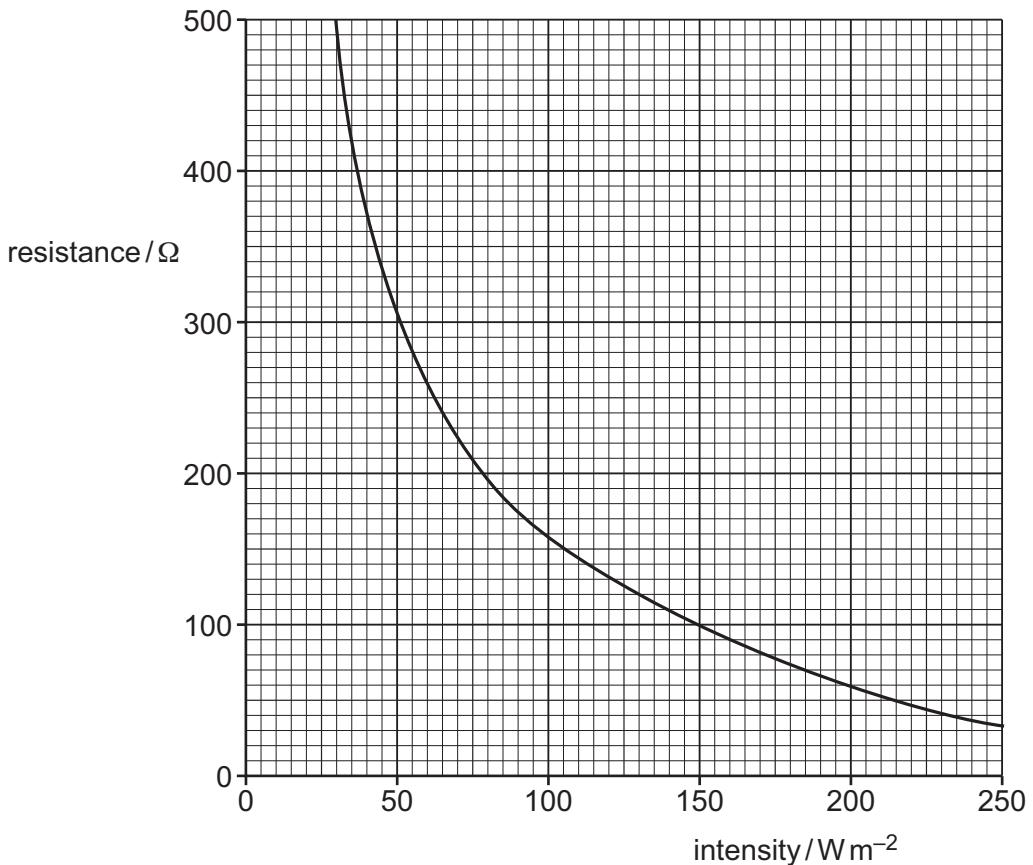


Fig. 5.2

- (a) State Kirchhoff's first law.

.....
.....

[1]

- (b) The intensity of light incident on Z is 130 W m^{-2} . The current in the battery is 38 mA.

- (i) Show that the terminal potential difference of the battery is 4.8 V.

[2]

- (ii) Calculate the current I_2 in Y.

$$I_2 = \dots \text{ A} [3]$$

- (iii) Calculate the power dissipated in Y.

$$\text{power} = \dots \text{ W} [2]$$

- (iv) The intensity of the light incident on Z decreases.

State and explain the effect on the terminal potential difference of the battery.

.....
.....
.....
.....
.....

[3]

[Total: 11]

- 6 (a) State what is meant by a fundamental particle.

.....
.....

[1]

- (b) (i) Particle Q is a meson with a charge of 0.

Determine a possible quark composition for Q.

.....

[2]

- (ii) Particle Q has a mass of 0.67 u and a kinetic energy of $2.1 \times 10^{-16}\text{ J}$.

Calculate the speed of particle Q.

speed = m s^{-1} [3]

- (c) Radium-228 ($^{228}_{88}\text{Ra}$) is a radioactive nuclide.

- (i) State the number of electrons in a neutral atom of radium-228.

number of electrons = [1]

- (ii) A nucleus of radium-228 undergoes a series of decays to form nucleus X. During the process, 5 α -particles and 4 β^- particles are emitted.

Determine the number of protons and the number of neutrons in nucleus X.

number of protons =

number of neutrons =

[2]

[Total: 9]

