

Cambridge International AS & A Level

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

PHYSICS

9702/53

Paper 5 Planning, Analysis and Evaluation

October/November 2025

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].

This document has **8** pages.

1 On a bench, a steel ball of radius r is used to compress a spring by a distance x . The ball is held at rest in this position, as shown in Fig. 1.1.

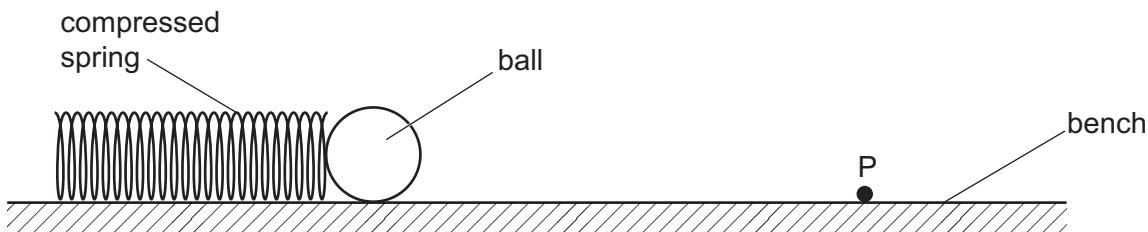


Fig. 1.1

The ball is released and rolls along the bench. At a fixed point P, the ball has speed v . The speed of the ball at P is determined using **one** light gate connected to a timer.

Several steel balls of different radii are available.

It is suggested that v is related to r by the relationship

$$v^2 = \frac{Ykx^2}{r^n \rho}$$

where k is the spring constant of the spring, ρ is the density of the steel, and Y and n are constants.

Plan a laboratory experiment to test the relationship between v and r .

Draw a diagram showing the arrangement of your equipment.

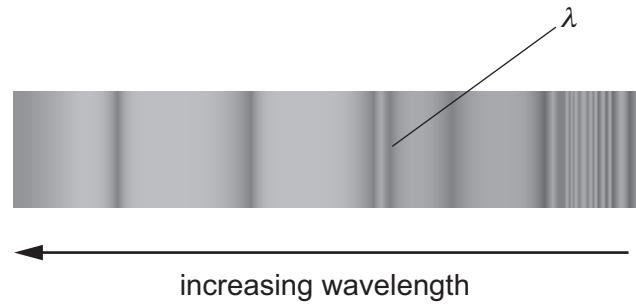
Explain how the results could be used to determine values for Y and n .

In your plan you should include:

- the procedure to be followed
- the measurements to be taken
- the control of variables
- the analysis of the data
- any safety precautions to be taken.

Diagram

DO NOT WRITE IN THIS MARGIN



[15]

2 A student investigates light from different galaxies.

Fig. 2.1 shows the lines in the absorption spectrum from a distant galaxy.

Fig. 2.1

The wavelength of one of the lines in the absorption spectrum is λ . The wavelength of this spectral line in the laboratory is λ_0 .

The observations of the same spectral line are repeated for different galaxies.

The student determines the distance d of each galaxy from the Earth.

It is suggested that λ and d are related by the equation

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{Hd}{c}$$

where c is the speed of light in free space and H is the Hubble constant.

(a) A graph is plotted of λ on the y -axis against $\frac{d}{c}$ on the x -axis.

Determine expressions for the gradient and y -intercept.

gradient =

y -intercept =

[1]

(b) Values of d and λ are given in Table 2.1.

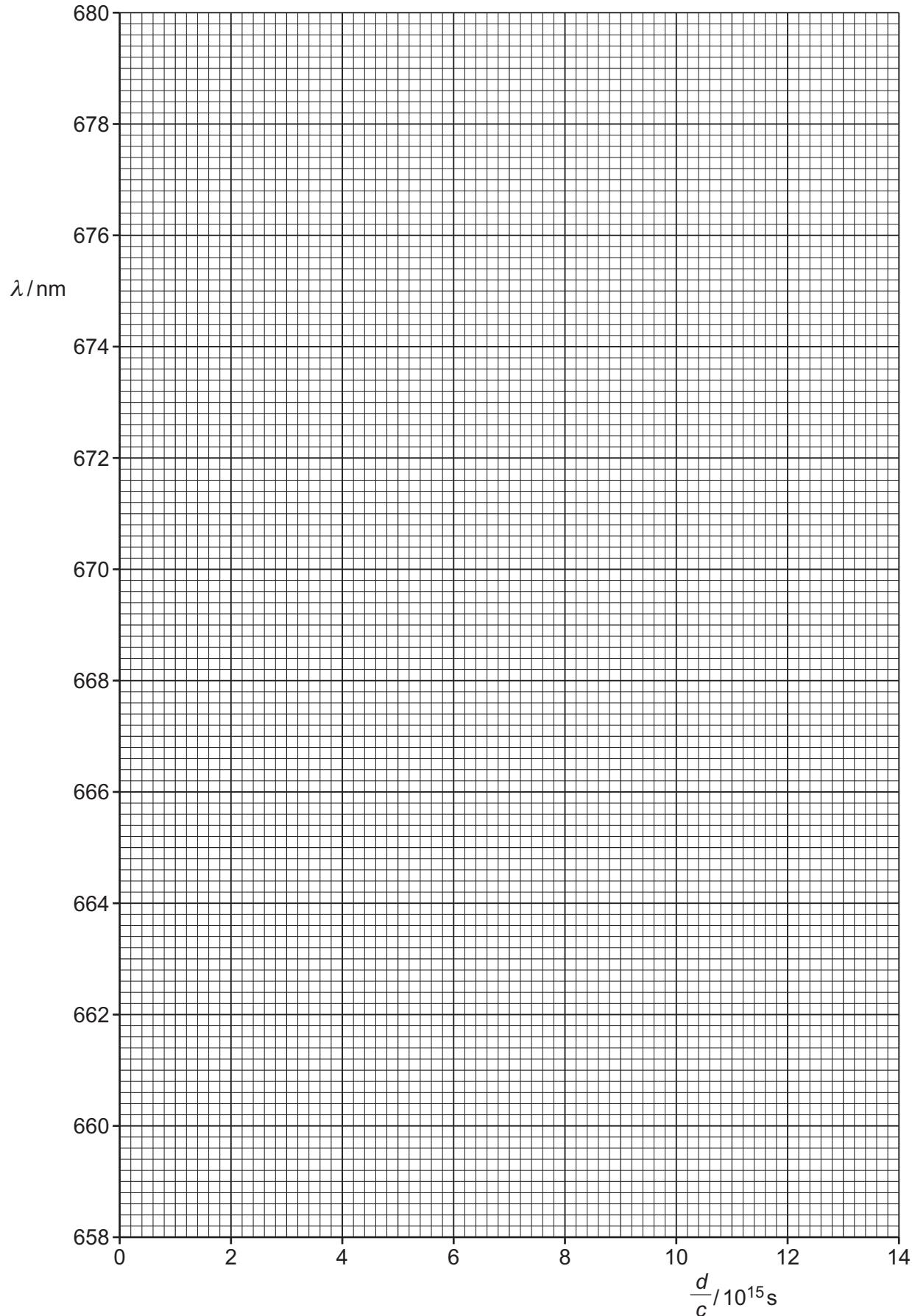
Table 2.1

$d/10^{21}\text{ km}$	$\frac{d}{c}/10^{15}\text{ s}$	λ/nm
0.48 ± 0.12		658.4
1.04 ± 0.12		661.2
1.45 ± 0.12		664.2
1.80 ± 0.12		665.7
2.85 ± 0.12		672.4
3.75 ± 0.12		678.2

The value of c is $3.00 \times 10^5 \text{ km s}^{-1}$.

Calculate and record values of $\frac{d}{c}/10^{15}\text{ s}$ in Table 2.1. Include the absolute uncertainties in $\frac{d}{c}$ [2]

(c) (i) Plot a graph of λ/nm against $\frac{d}{c}/10^{15}\text{ s}$. Include error bars for $\frac{d}{c}$. [2]


(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Label both lines. [2]

(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

gradient = [2]

DO NOT WRITE IN THIS MARGIN

(iv) Determine the y -intercept of the line of best fit. Include the absolute uncertainty in your answer.

y -intercept = [2]

(d) Using your answers to (a), (c)(iii) and (c)(iv), determine the values of λ_0 and H . Include appropriate units.

$$\lambda_0 = \dots$$

$$H = \dots$$

[2]

(e) Hubble's law suggests that the age T of the universe is related to H by

$$T = \frac{1}{H}.$$

Determine a value for T . Include the absolute uncertainty in your answer.

$$T = \dots \text{ s} \quad [2]$$

[Total: 15]

