

Cambridge International AS & A Level

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

PHYSICS

9702/54

Paper 5 Planning, Analysis and Evaluation

October/November 2025

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].

This document has **8** pages.

1 Fig. 1.1 shows a horizontal turntable.

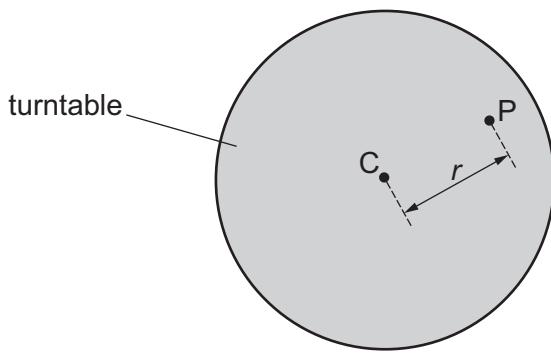


Fig. 1.1

Point C is at the centre of the turntable. Point P is a distance r from the centre.

Fig. 1.2 shows a side view of a d.c. motor attached to the turntable with a belt.

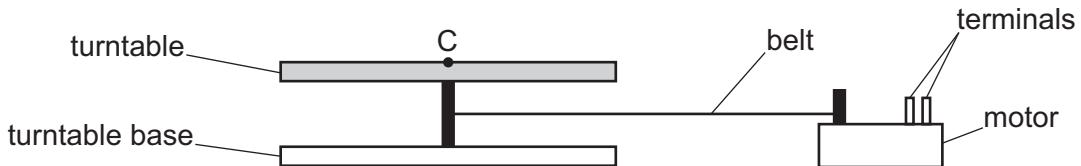


Fig. 1.2

The motor is used to rotate the turntable at frequency f_0 . The motor is switched off and the turntable continues to rotate at frequency f .

A sphere of adhesive putty of mass m is dropped onto the turntable at point P. The frequency of the turntable is now f .

It is suggested that f is related to m by the relationship

$$\frac{Kf_0}{f} = \beta K + mr^2$$

where β and K are constants.

Plan a laboratory experiment to test the relationship between f and m .

Draw a diagram showing the arrangement of your equipment.

Explain how the results could be used to determine values for β and K .

In your plan you should include:

- the procedure to be followed
- the measurements to be taken
- the control of variables
- the analysis of the data
- any safety precautions to be taken.

Diagram

[15]

2 A student places a slide with a double slit on a support clamped to the bench as shown in Fig. 2.1.

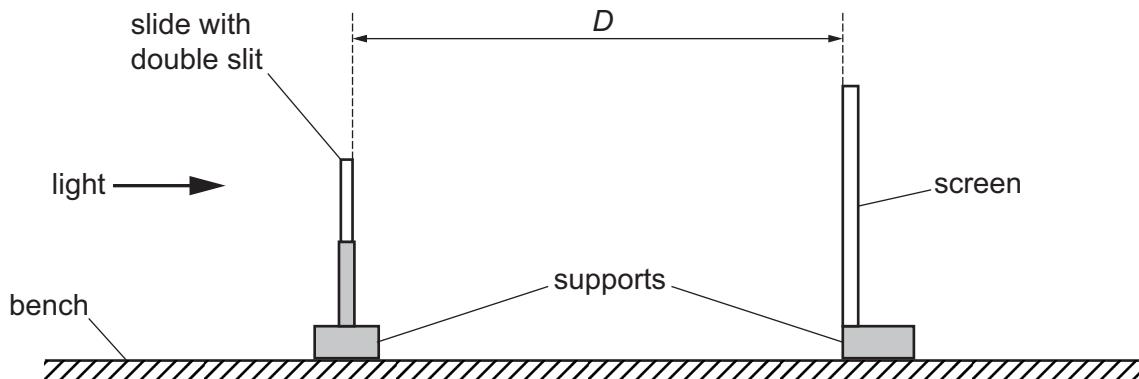


Fig. 2.1

The distance between the slide and the screen is D .

The separation s of the slits is determined.

Light from a laser is incident normally on the double slit. An interference pattern is observed on the screen. The distance w across 10 fringes is measured. The distance y between the centres of adjacent fringes is calculated using the equation

$$y = \frac{w}{10}.$$

The experiment is repeated with slides of different slit separation s .

It is suggested that y and s are related by the equation

$$\lambda = \frac{sy}{D}$$

where λ is the wavelength of the incident light.

(a) A graph is plotted of y on the y -axis against $\frac{1}{s}$ on the x -axis.

Determine an expression for the gradient.

gradient = [1]

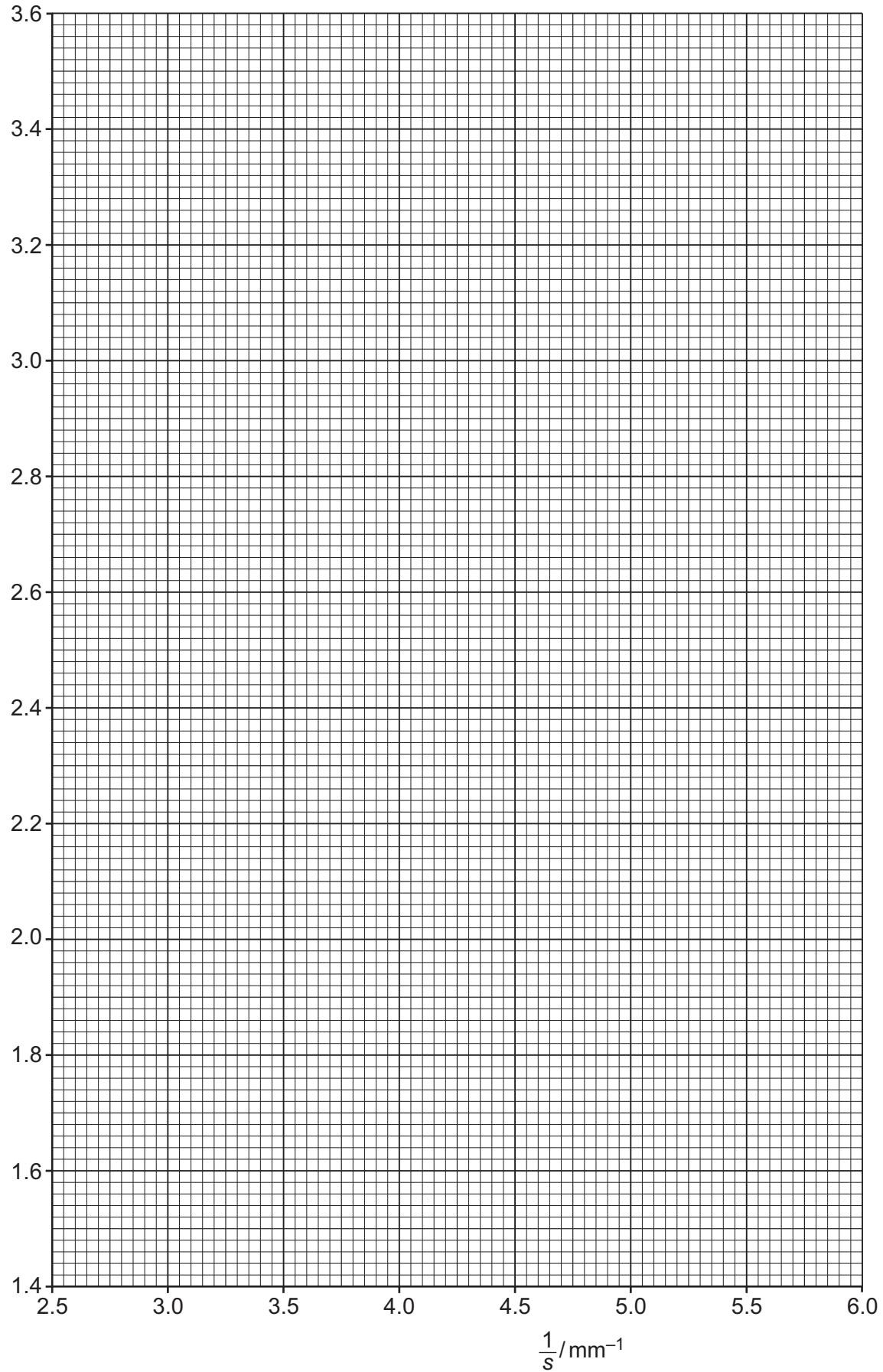
(b) Values of s and w are given in Table 2.1.

Table 2.1

s/mm	$\frac{1}{s}/\text{mm}^{-1}$	w/mm	y/mm
0.18 ± 0.01		33.0	
0.21 ± 0.01		28.9	
0.24 ± 0.01		25.1	
0.27 ± 0.01		22.6	
0.31 ± 0.01		19.6	
0.38 ± 0.01		15.9	

Calculate and record values of $\frac{1}{s}/\text{mm}^{-1}$ and y/mm in Table 2.1. Include the absolute uncertainties in $\frac{1}{s}$. [2]

(c) (i) Plot a graph of y/mm against $\frac{1}{s}/\text{mm}^{-1}$. Include error bars for $\frac{1}{s}$. [2]


(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Label both lines. [2]

(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

gradient = [2]

DO NOT WRITE IN THIS MARGIN

(d) The distance between the slide and the screen is measured several times:

0.929 m 0.918 m 0.913 m 0.918 m 0.927 m.

Determine the mean distance D . Include the absolute uncertainty.

$$D = \dots \text{m} \quad [1]$$

(e) (i) Using your answers to (a), (c)(iii) and (d), determine the value of λ . Include an appropriate unit.

$$\lambda = \dots \quad [2]$$

(ii) Determine the percentage uncertainty in λ .

$$\text{percentage uncertainty in } \lambda = \dots \% \quad [1]$$

(f) The experiment is repeated. Determine the slit separation s that gives a value of y of $(0.500 \pm 0.005)\text{cm}$. Include the absolute uncertainty.

$$s = \dots \text{m} \quad [2]$$

[Total: 15]

