

Cambridge International AS & A Level

CHEMISTRY**9701/34**

Paper 3 Advanced Practical Skills 2

October/November 2025**MARK SCHEME**

Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2025 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **12** printed pages.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance

For questions that require ***n*** responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards ***n***.
- Incorrect responses should not be awarded credit but will still count towards ***n***.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first ***n*** responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

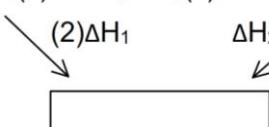
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Annotations guidance for centres

Examiners use a system of annotations as a shorthand for communicating their marking decisions to one another. Examiners are trained during the standardisation process on how and when to use annotations. The purpose of annotations is to inform the standardisation and monitoring processes and guide the supervising examiners when they are checking the work of examiners within their team. The meaning of annotations and how they are used is specific to each component and is understood by all examiners who mark the component.

We publish annotations in our mark schemes to help centres understand the annotations they may see on copies of scripts. Note that there may not be a direct correlation between the number of annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an indication of the quality of the response.


The annotations listed below were available to examiners marking this component in this series.

Annotations

Annotation	Meaning
	Correct point or mark awarded
	Incorrect point or mark not awarded
	Information missing or insufficient for credit
BOD	Benefit of the doubt given
CON	Contradiction in response otherwise markworthy, mark not given
DP	Error in number of decimal places
ECF	Error carried forward applied
	Incorrect or insufficient point ignored while marking the rest of the response
RE	Rounding error
REP	Repeat error
SEEN or /	Blank page or part of script seen

Annotation	Meaning
SF	Error in number of significant figures
TE	Transcription error

Question	Answer	Marks
1(a)	<p>I Unambiguous headings AND units for all six recorded readings and calculated values in experiment 1:</p> <ul style="list-style-type: none"> • (mass of) container + FB 2 / solid / g • (mass of) container (+ residue) / g • (mass of) FB 2 / solid (used / added) / g • initial temperature OR temperature of FB 1 / °C • final temperature / °C • temperature change / °C 	1
	<p>II</p> <ul style="list-style-type: none"> • All four weighings recorded to same decimal places (either 2 or 3). • All four temperatures recorded to .0 or .5°C 	1
	<p>III Correct subtractions to give all four calculated values:</p> <ul style="list-style-type: none"> • mass of FB 2 used and mass of FB 3 used • changes in temperature for experiments 1 and 2. 	1
	<p>Accuracy (Q) marks</p> <p>Calculate the candidate's <i>temperature to mass ratio</i> for experiment 1 to 2 d.p.: Ratio = ΔT (experiment 1) / mass of FB2.</p> <p>Calculate the supervisor's ratio for experiment 1 to 2 d.p.</p> <p>Calculate the difference, δ, between the candidate's value (rounded to 2 d.p.) and the supervisor's value (rounded to 2 d.p.).</p>	
	IV award if $\delta \leq 0.50$	1
1(b)(i)	<p>M1: Correctly calculates both M_r values: M_r of $\text{NaHCO}_3 = 84$ AND M_r of $\text{Na}_2\text{CO}_3 = 106$</p>	1
	<p>M2: Correctly calculates both amounts using subtractions from (a) $n = \text{mass in (a)} / M_r$ (mol) AND both answers given to 2–4 sf</p>	1
1(b)(ii)	<p>Correctly calculates both values of energy change $\text{energy change} = 20 \times 4.18 \times \Delta T$ (J) AND both answers given to 2–4 sf</p>	1
1(b)(iii)	<p>M1: Correct display of $\Delta H = (b)(ii) / (b)(i)$ for experiment 1 or experiment 2.</p>	1

Question	Answer	Marks
	<p>M2: Correctly uses $\Delta H = (\mathbf{b})(\mathbf{ii}) / ((\mathbf{b})(\mathbf{i}) \times 1000)$ AND + sign for ΔH_1 AND – sign for ΔH_2 AND both answers given to 2–4 sf</p>	1
1(b)(iv)	<p>M1: Drawing of enthalpy cycle</p> <p>($2\text{NaHCO}_3(\text{s}) \rightarrow \text{Na}_2\text{CO}_3(\text{s}) + \text{H}_2\text{O}(\text{l}) + \text{CO}_2(\text{g})$)</p>	1
	<p>M2: Correctly calculates $\Delta H_r = 2\Delta H_1 - \Delta H_2$</p>	1

Question	Answer	Marks
2(a)	<p>I All the following data are recorded</p> <ul style="list-style-type: none"> • two burette readings AND titre for the rough titration • initial and final burette readings for two (or more) accurate titrations 	1
	<p>II Titre values recorded for accurate titrations, AND Correct headings and units in the accurate titration table</p> <ul style="list-style-type: none"> • initial / start AND (burette) reading / volume • final / end AND (burette) reading / volume • titre OR volume used / added / or FB 5 used / added • unit: / cm³ OR (cm³) OR in cm³ (for each heading) OR cm³ unit given for each volume recorded. 	1
	<p>III All accurate burette readings are recorded to the nearest 0.05 cm³.</p>	1
	<p>IV: The final accurate titre recorded is within 0.10 cm³ of any other accurate titre</p>	1
	<p>Accuracy (Q) marks</p> <p>Round burette readings to the nearest 0.05 cm³. Check and correct titre subtractions where necessary.</p> <p>Select the best mean titre, using the following hierarchy:</p> <ul style="list-style-type: none"> • two (or more) accurate identical titres (ignoring any that are labelled 'rough'), <i>then</i> • two (or more) accurate titres within 0.05 cm³, <i>then</i> • two (or more) accurate titres within 0.10 cm³, <i>etc</i> <p>Calculate the candidate's mean titre value.</p> <p>Calculate the supervisor's mean titre value.</p> <p>Calculate the difference (δ) between the candidate's mean titre and the supervisor's mean titre.</p> <p>Award accuracy Q marks as follows:</p> <p>V award if $\delta \leq 0.60$ cm³</p> <p>VI award if $\delta \leq 0.40$ cm³</p> <p>VII award if $\delta \leq 0.20$ cm³</p>	3

Question	Answer	Marks
2(b)	Correctly calculates mean titre to 2 d.p. <ul style="list-style-type: none"> • Candidate must take the average of two (or more) titres that are within a total spread of not more than 0.20 cm³. • Working / explanation must be shown OR ticks must be put next to the two (or more) accurate readings selected. • The mean should be quoted to 2 d.p. and rounded to nearest 0.01 cm³. 	1
2(c)(i)	Final answers to both parts (c)(ii) and (c)(iii) quoted to 3 or 4 sf.	1
2(c)(ii)	Correctly calculates amount of HCl = $0.2 \times (\text{b}) / 1000$ (mol) AND gives same answer for amount of NaHCO ₃	1
2(c)(iii)	Correctly uses mass of NaHCO ₃ = (c)(ii) $\times 40 \times 84(.0)$ (g)	1
	Correctly uses percentage by mass = $[(17.20 - \text{mass of NaHCO}_3) / 17.20] \times 100$ OR percentage by mass = $100 - [(\text{mass of NaHCO}_3 / 17.20) \times 100]$	1
2(d)	M1: (ΔH_1) smaller / less positive (for impure NaHCO ₃)	1
	M2: Impurity does not react with the acid / FB 5	1

Question	Answer	Marks
FB 7 is CuCO₃(s); FB 8 is FeSO₄(aq)		
3(a)(i)	<ul style="list-style-type: none"> • selects (aqueous) silver nitrate and (aqueous) ammonia * • white ppt * • soluble in (aqueous) ammonia * • NaCl * <p>2 * = 1 mark</p>	2
3(a)(ii)	(The acid) removes / reacts with the hydrogencarbonate ions OR silver ions react with hydrogencarbonate ions	1
3(b)(i)	<ul style="list-style-type: none"> • green (at start) * • turns to a black powder / solid * • powder very fluid / moves around the test-tube * • condensation (on walls of test-tube) * <p>2 * = 1 mark</p>	2
3(b)(ii)	<ul style="list-style-type: none"> • forms green-blue solution * • effervescence * • vigorous reaction * • attempts to test with limewater * • gas / carbon dioxide gives white precipitate / solid with limewater * <p>2 * = 1 mark</p>	2

Question	Answer	Marks
3(b)(iii)	<p>Test 1 Add NaOH(aq) (pale) blue precipitate insoluble in excess *</p> <p>Test 2 Add NH₃(aq) (pale) blue precipitate * (precipitate dissolves forming) dark / deep blue solution in excess *</p> <p>Test 3 Add aluminium foil effervescence / fizzing* (gas) pops with a lighted splint * pink-brown solid * turns colourless / pale blue solution formed * gets hotter *</p> <p>Metal ion in FB 7: Cu²⁺ *</p> <p>2 * = 1 mark</p>	4
3(c)(i)	<p>Test 1 Add NaOH(aq) green precipitate * insoluble in excess * (precipitate) turns brown (on surface) *</p> <p>Test 2 Add acidified KMnO₄ purple to colourless / (pale) yellow solution OR KMnO₄ decolourised*</p> <p>2 * = 1 mark</p>	2
3(c)(ii)	<p>Redox reaction AND change to colourless linked to reduction of manganate(VII) ions OR change to yellow colour linked to oxidation of Fe²⁺ or production of Fe³⁺.</p>	1