

Cambridge International AS & A Level

CANDIDATE
NAMECENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**9701/24**

Paper 2 AS Level Structured Questions

October/November 2025**1 hour 15 minutes**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has **16** pages. Any blank pages are indicated.

1 The Group 17 elements are oxidising agents.

(a) (i) Explain how the Group 17 elements act as oxidising agents.

..... [1]

(ii) Write an equation to show the reaction in which Cl_2 oxidises aluminium metal.

..... [1]

(iii) A student heats equal amounts of $\text{I}_2(\text{g})$ and $\text{H}_2(\text{g})$ in a sealed flask. The student leaves the contents to cool.

State what you would observe during the reaction.

..... [1]

(b) Cl_2 and Br_2 can each react with NH_3 to give N_2 and a hydrogen halide, HX .

The relative bond strengths of $\text{X}-\text{X}$ and $\text{H}-\text{X}$ determine the difference in enthalpy change of the two reactions.

(i) Describe and explain the difference in the $\text{X}-\text{X}$ bond strengths of Cl_2 and Br_2 .

.....
.....
.....
..... [2]

(ii) Describe the relative thermal stabilities of HCl and HBr .

..... [1]

(iii) Define enthalpy change of formation, ΔH_f .

.....
.....
.....

[2]

(iv) Table 1.1 gives data relevant to the reaction of $\text{Cl}_2(\text{g})$ with $\text{NH}_3(\text{g})$.

Table 1.1

compound	enthalpy change of formation, $\Delta H_f/\text{kJ mol}^{-1}$
$\text{NH}_3(\text{g})$	-46
$\text{HCl}(\text{g})$	-92

Use the data in Table 1.1 to calculate the enthalpy change of the reaction of $\text{Cl}_2(\text{g})$ with $\text{NH}_3(\text{g})$.

enthalpy change of reaction = kJ mol^{-1} [2]

(v) I_2 reacts with NH_3 to form NI_3 .

Predict the shape of a molecule of NI_3 . Explain your answer.

shape

explanation

[2]

(c) Table 1.2 shows some information about reactions of NaCl , NaBr and NaI .

Table 1.2

	NaCl	NaBr	NaI
observation with $\text{Ag}^+(\text{aq})$	white precipitate		
type of reaction with concentrated H_2SO_4	acid–base	acid–base, then redox	acid–base, then redox
observations with concentrated H_2SO_4			<ul style="list-style-type: none"> • black solid • yellow solid • effervescence

(i) Complete Table 1.2. [4]

(ii) Suggest an identity for the species that produces each observation in the reaction of NaI with concentrated H_2SO_4 .

black solid

yellow solid

effervescence

[2]

(d) Table 1.3 gives some information about $MgCl_2$ and $SiCl_4$.

Table 1.3

	MgCl_2	SiCl_4
electrical conductivity when liquid	conducts	does not conduct
observation when added to water	dissolves	vigorous reaction

(i) Explain the difference between the electrical conductivity of liquid $MgCl_2$ and of liquid $SiCl_4$. Refer to bonding and relevant particles in your answer.

.....
.....
.....
..... [2]

(ii) Suggest the pH of the solutions that form when each chloride is added to water.

MgCl₂ SiCl₄

[2]

[Total]: 221

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

2 Aluminium oxide, Al_2O_3 , and phosphorus(V) oxide, P_4O_{10} , are both used as reagents and catalysts.

(a) The melting point of Al_2O_3 is 2072 °C. The melting point of P_4O_{10} is 340 °C.

Explain the difference in the melting points of these two compounds.

.....
.....
.....

[3]

(b) A 5.00 dm³ sealed flask contains 0.400 mol of CO(g) and 0.800 mol of H₂(g) and an Al_2O_3 catalyst. The flask is heated to a temperature of 290 °C and allowed to reach equilibrium. Equation 1 shows the reaction.

The equilibrium constant, K_c , of equation 1 is given.

$$K_c = \frac{[CH_3OH]}{[CO][H_2]^2}$$

(i) State the units of K_c .

.....

[1]

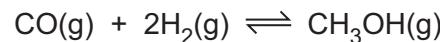
(ii) The equilibrium mixture contains 0.280 mol of CH₃OH(g).

Calculate the value of K_c .

Give your answer to **three** significant figures.

value of K_c = [3]

(iii) State and explain the effect, if any, on the value of K_c when the overall pressure in the sealed flask is increased.


.....
.....

[1]

(c) P_4O_{10} catalyses the reversible reaction of CO with H_2 to form CH_3OH .

equation 1

P_4O_{10} then acts as a dehydrating agent, causing CH_3OH to form CH_3OCH_3 .

(i) Explain how the presence of a catalyst affects a chemical reaction.

.....
.....
.....

[1]

(ii) Construct an equation for the dehydration reaction of CH_3OH to form CH_3OCH_3 .

.....

[1]

(iii) Write an equation to show the reaction of P_4O_{10} with an excess of water.

.....

[Total: 11]

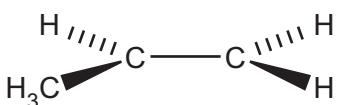
3 Propan-2-ol, $(\text{CH}_3)_2\text{CHOH}$, is sometimes added to fuel to help it burn.

Fig. 3.1 shows some reactions of propan-2-ol.

Fig. 3.1

(a) (i) Draw the structure of organic compound K.

[1]


(ii) State an observation you would make in reaction 2.

[1]

(iii) State the type of reaction that is shown in reaction 3.

[1]

(iv) Complete Fig. 3.2 to show the pi (π) bond in L that is formed from orbital overlap.

Fig. 3.2

[1]

(b) Propan-2-ol reacts with sodium to produce $(\text{CH}_3)_2\text{CH}-\text{O}^-$ anions.

These anions react with 2-bromopropane to form compound **N**, as shown in Fig. 3.3.

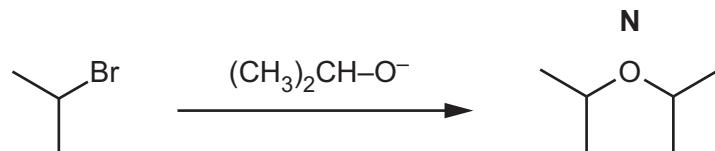


Fig. 3.3

(i) Write an equation for the reaction of propan-2-ol with sodium.

..... [1]

(ii) The reaction of 2-bromopropane with $(\text{CH}_3)_2\text{CH}-\text{O}^-$ anions follows an $\text{S}_{\text{N}}1$ mechanism.

Complete Fig. 3.4 to show this mechanism. Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Fig. 3.4

[3]

(iii) Suggest how the rate of the $\text{S}_{\text{N}}1$ reaction would change, if at all, if 2-chloropropane were used instead of 2-bromopropane.

Explain your answer.

.....
.....
..... [2]

(iv) **N** is also added to petrol to make it burn more smoothly.

Construct an equation for the complete combustion of **N**, $\text{C}_6\text{H}_{14}\text{O}$.

$\text{C}_6\text{H}_{14}\text{O}$ [1]

[Total: 11]

4 Compounds **P** and **Q** are structural isomers.

Fig. 4.1

(a) (i) Define structural isomerism.

.....
..... [2]

(ii) **P** shows geometrical isomerism.

Draw the geometrical isomer of **P**. Explain why the two isomers are **not** identical.

geometrical isomer of **P**

explanation

.....
.....
..... [2]

(iii) Both **P** and **Q** react with aqueous bromine.

Name the mechanism of this reaction.

..... [1]

(iv) **Q** is oxidised by hot concentrated acidified KMnO_4 (aq), forming two different organic products.

Construct an equation for this reaction. Use [O] to represent an atom of oxygen from the oxidising agent.

$(\text{CH}_3)_2\text{C}=\text{CHCH}_3$

(v) **Q** reacts with HBr(g) to produce two structural isomers, **R** and **S**, as shown in Fig. 4.2.

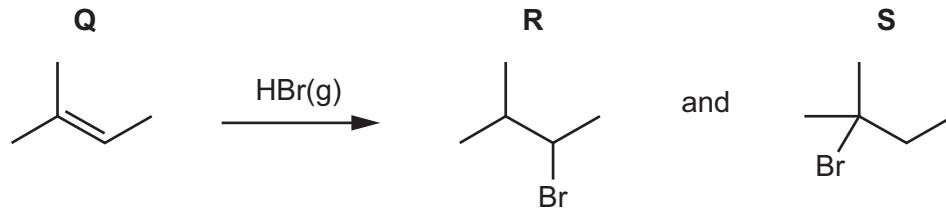


Fig. 4.2

State and explain why isomer **S** is the major product of the reaction.

Suggest structures for the ions responsible for these peaks.

peak at $m/e = 150$

peak at $m/e = 152$

[2]

(b) Fig. 4.3 shows a synthesis starting from **T**, a different isomer of **R** and **S**.

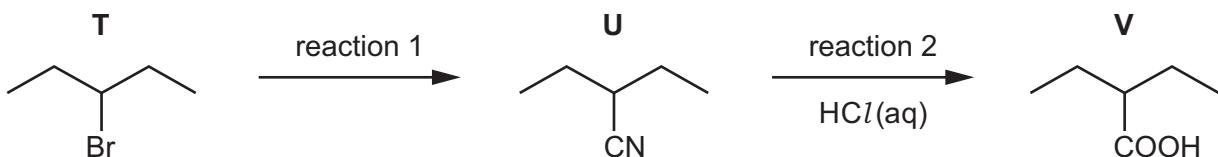


Fig. 4.3

(i) Identify the reagent and conditions for reaction 1.

..... [1]

(ii) Reaction 2 is a hydrolysis reaction.

Construct an equation for reaction 2.

$(\text{C}_2\text{H}_5)_2\text{CHCN}$ [1]

(iii) **V** reacts with propan-2-ol in the presence of a catalytic amount of H_2SO_4 to form organic compound **W**.

Complete Table 4.1 to give details of this reaction.

Table 4.1

	reaction of V with propan-2-ol
type of reaction	
functional group formed	
molecular formula of organic product W	

[3]

[Total: 16]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (4.18 J g ⁻¹ K ⁻¹)

The Periodic Table of Elements

1		2		Group																		
1		2		Group																		
1		2		Group																		
3	Li	4	Be	1	H	hydrogen	1.0															
11	Na	12	Mg	2																		
19	K	20	Ca	3	Sc	21	Ti	22	V	23	Cr	24	Mn	25	Fe	26	Co	27	Ni	28	Zn	29
39.1	potassium	40.1	calcium	45.0	scandium	45.0	titanium	47.9	vanadium	50.9	chromium	52.0	manganese	54.9	iron	55.8	cobalt	58.9	nickel	58.7	zinc	65.4
37	Rb	38	Sr	4	Y	39	Nb	40	La	41	Mo	42	Tc	43	Ru	44	Rh	45	Pd	46	Ag	47
85.5	rubidium	87.6	strontium	88.9	yttrium	88.9	niobium	91.2	zirconium	91.2	mo	95.9	technetium	—	ruthenium	101.1	rhodium	102.9	palladium	106.4	silver	107.9
55	Cs	56	Ba	57–71	lanthanoids	72	Ta	73	W	74	Re	75	Ir	76	Os	77	Ir	78	Pt	79	Hg	80
132.9	caesium	137.3	barium	178.5	hafnium	178.5	lanthanum	180.9	tungsten	183.8	rhodium	186.2	osmium	190.2	iridium	192.2	platinum	195.1	gold	197.0	thallium	204.4
87	Fr	88	Ra	89–103	actinoids	104	Db	105	Sg	106	Bh	107	Rs	108	Mt	109	Ds	110	Rg	111	Nh	112
—	francium	—	radium	—	rutherfordium	—	dubnium	—	seaborgium	—	bohrium	—	meitnerium	—	hassium	—	damascusium	—	roentgenium	—	nihonium	—
Key																						
atomic number																						
atomic symbol																						
name																						
relative atomic mass																						

57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68
138.9	lanthanum	140.1	cerium	140.9	praseodymium	144.2	neodymium	144.2	promethium	—	europium	152.0	gadolinium	157.3	terbium	158.9	erbium	162.5	dysprosium	164.9	holmium	167.3
89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Fm	100
—	actinium	—	thorium	232.0	protactinium	231.0	uranium	238.0	neptunium	—	plutonium	—	americium	—	curium	—	berkelium	—	californium	—	fermium	—
lanthanoids																						
actinoids																						

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

