

Cambridge International AS & A Level

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY

9701/42

Paper 4 A Level Structured Questions

October/November 2025

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has **24** pages. Any blank pages are indicated.

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

1 Magnesium nitrate, $\text{Mg}(\text{NO}_3)_2$, and strontium nitrate, $\text{Sr}(\text{NO}_3)_2$, both decompose when heated to form the metal oxide and a mixture of gases.

(a) Write an equation for the thermal decomposition of $\text{Mg}(\text{NO}_3)_2$.

..... [1]

(b) State which of $\text{Mg}(\text{NO}_3)_2$ or $\text{Sr}(\text{NO}_3)_2$ decomposes at a lower temperature.

Explain your answer.

compound that decomposes at a lower temperature

explanation

.....
.....
.....
.....
.....

[2]

(c) Magnesium oxide, MgO , and strontium oxide, SrO , both react with dilute sulfuric acid.

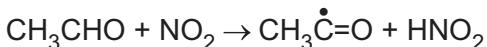
MgO forms a soluble salt, **A**.

SrO forms an insoluble salt, **B**.

(i) Identify the products formed when MgO reacts with dilute sulfuric acid.

..... [1]

(ii) Explain why **A** is more soluble than **B**.


.....
.....
.....
.....
.....
.....

[3]

[Total: 7]

2 Ethanal, CH_3CHO , reacts with nitrogen dioxide, NO_2 . The products of the first step of this reaction are a $\text{CH}_3\dot{\text{C}}=\text{O}$ radical and a molecule of nitrous acid, HNO_2 .

(a) (i) Use **two** words to complete the sentence.

This reaction involves of the single covalent bond between a hydrogen atom and a carbon atom in CH_3CHO .

[1]

(ii) The hydrogen atom mentioned in (a)(i) forms a covalent bond with one of the oxygen atoms of an NO_2 molecule. An NO_2 molecule has a single, unpaired electron on the nitrogen atom. All electrons are paired in an HNO_2 molecule.

Draw dot-and-cross diagrams of NO_2 and HNO_2 in the boxes. Show outer shell electrons only.

NO_2

HNO_2

[1]

(iii) Use VSEPR theory to predict the bond angle at the nitrogen atom in an HNO_2 molecule.

bond angle = [1]

(b) The rate equation for the reaction between CH_3CHO and NO_2 is shown.

$$\text{rate} = k[\text{CH}_3\text{CHO}][\text{NO}_2]$$

Under certain conditions, when the concentrations of both CH_3CHO and NO_2 are $0.200 \text{ mol dm}^{-3}$, the rate of the reaction is $1.53 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$.

Calculate the value of the rate constant, k , under these conditions. Give the units of k .

$$k = \dots \text{ units} \dots [2]$$

(c) The reaction mixture described in (b) is monitored over a period of time.

Predict whether the graph of $[\text{NO}_2]$ against time shows a constant half-life.

Explain your answer.

prediction

explanation

.....

[1]

(d) NO_2 also reacts with ozone, O_3 .

The rate equation is shown.

$$\text{rate} = k_1[\text{NO}_2]$$

Under certain conditions, the value of k_1 is 0.0848 s^{-1} .

The reaction has a constant half-life under these conditions.

Calculate the half-life in seconds.

half-life = s [1]

(e) NO_2 is present in the exhaust gases of cars. It can react with carbon monoxide, CO , on the surface of a heterogeneous catalyst in the car's catalytic converter.

Describe the mode of action of this heterogeneous catalyst.

.....
.....
.....
.....
.....
.....
.....

[2]

[Total: 9]

3 (a) (i) Define conjugate acid–base pair.

.....
.....

[1]

(ii) Give the formulas of the conjugate acid and the conjugate base of the hydrogen phosphate ion, HPO_4^{2-} .

conjugate acid of HPO_4^{2-}

conjugate base of HPO_4^{2-}

[1]

(b) The K_a of propanoic acid, $\text{CH}_3\text{CH}_2\text{COOH}$, is $1.35 \times 10^{-5} \text{ mol dm}^{-3}$ at 298 K.

Solution C is a solution of $\text{CH}_3\text{CH}_2\text{COOH}$ with a pH of 3.60 at 298 K.

(i) Calculate the concentration of $\text{CH}_3\text{CH}_2\text{COOH}$ in solution C.

$$[\text{CH}_3\text{CH}_2\text{COOH}] = \dots \text{ mol dm}^{-3} \quad [2]$$

(ii) Calculate the concentration of hydroxide ions in solution C.

$$[\text{OH}^-] = \dots \text{ mol dm}^{-3} \quad [1]$$

(iii) Calculate the concentration of a solution of hydrochloric acid with the same pH as solution C.

$$\text{concentration} = \dots \text{ mol dm}^{-3} \quad [1]$$

(iv) Table 3.1 shows three possible values of the K_a of dimethylpropanoic acid, $(\text{CH}_3)_3\text{CCOOH}$.

Place a tick in Table 3.1 to show the correct value. Explain your answer.

Table 3.1

value of K_a / mol dm $^{-3}$	place one tick (✓) in this column
9.33×10^{-6}	
1.35×10^{-5}	
3.35×10^{-5}	

explanation

.....

.....

.....

.....

.....

[3]

(c) Solution **D** is made by mixing 100 cm^3 of 0.100 mol dm^{-3} $\text{CH}_3\text{CH}_2\text{COOH}$ and 100 cm^3 of 0.100 mol dm^{-3} NaCl .

The pH of solution **D** is measured as small amounts of $\text{H}_2\text{SO}_4\text{(aq)}$ are added to it, and when small amounts of $\text{NaOH}\text{(aq)}$ are added to it.

Solution **D** only acts as a buffer solution when **one** of these solutions is added to it.

(i) Complete the sentence and write an equation for the reaction that occurs.

Solution **D** acts as a buffer when is added to it.

equation

[1]

(ii) Complete the sentence and explain why solution **D** does **not** act as a buffer when the other solution is added.

Solution **D** does **not** act as a buffer when is added to it.

explanation

.....

[1]

(d) Manganese(II) hydroxide, Mn(OH)_2 , is only slightly soluble in water.

The solubility of Mn(OH)_2 in water is $3.28 \times 10^{-3} \text{ g dm}^{-3}$ at 298 K.

(i) Calculate the concentration of a saturated solution of Mn(OH)_2 at 298 K.

$$[\text{Mn(OH)}_2] = \dots \text{ mol dm}^{-3} \quad [1]$$

(ii) Write an expression for the K_{sp} of Mn(OH)_2 . Give the units of K_{sp} .

$$K_{\text{sp}} =$$

$$\text{units} = \dots \quad [2]$$

(iii) Use your answers to (d)(i) and (d)(ii) to calculate the value of K_{sp} of Mn(OH)_2 at 298 K.

$$K_{\text{sp}} = \dots \quad [1]$$

[Total: 15]

4 (a) Define enthalpy change of atomisation, ΔH_{at} .

.....
.....

[1]

(b) Define first electron affinity, EA.

.....
.....

[1]

(c) Explain why the first electron affinity of chlorine is more exothermic than the first electron affinity of iodine.

.....
.....
.....
.....

[2]

(d) The enthalpy change for the reaction $\text{Cl}_2(\text{g}) + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{g})$ is -486 kJ mol^{-1} .

The first electron affinity of chlorine is -364 kJ mol^{-1} .

Calculate the enthalpy change of atomisation of chlorine.

ΔH_{at} of chlorine = kJ mol^{-1} [2]

[Total: 6]

5 Cobalt is a transition element which forms compounds containing Co^{2+} and Co^{3+} ions. Cobalt(II) sulfate dissolves in water to form a solution containing the $[\text{Co}(\text{H}_2\text{O})_6]^{2+}$ complex ion.

(a) (i) Complete the electronic configurations of a Co^{2+} ion and a Co^{3+} ion.

$\text{Co}^{2+} = [\text{Ar}] \dots \dots \dots$

$\text{Co}^{3+} = [\text{Ar}] \dots \dots \dots$

[1]

(ii) Explain why transition elements can form complex ions.

.....
.....

[1]

(iii) An excess of concentrated HCl is added to a solution containing $[\text{Co}(\text{H}_2\text{O})_6]^{2+}$.

Describe the colour change observed and the state of the cobalt-containing product.

The colour changes from to

The state of the cobalt-containing product is

[2]

(iv) Write an equation for the reaction occurring in (a)(iii).

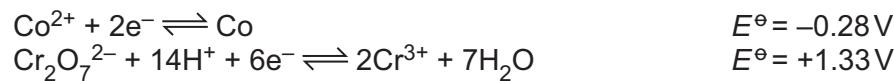
.....

[1]

(v) Name the type of reaction occurring in (a)(iii).

.....

[1]


(vi) Write an equation for the reaction that occurs when an excess of $\text{NaOH}(\text{aq})$ is added to a solution containing $[\text{Co}(\text{H}_2\text{O})_6]^{2+}$.

.....

[1]

(b) Cobalt metal can be oxidised by acidified $\text{K}_2\text{Cr}_2\text{O}_7$. The relevant half-equations, and their E^\ominus values, are shown.

(i) A Co^{2+}/Co electrode is constructed in which $[\text{Co}^{2+}]$ is 0.020 mol dm^{-3} at 298 K .

Use the Nernst equation to show that the E value for this Co^{2+}/Co electrode is -0.33 V .

[2]

(ii) An electrochemical cell is constructed using the Co^{2+}/Co electrode described in **(b)(i)** and a $\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}$ electrode in which all conditions are standard.

Calculate the value of E_{cell} .

$$E_{\text{cell}} = \dots \quad [1]$$

(iii) A current is drawn from the electrochemical cell described in **(b)(ii)**.

Write an equation for the reaction taking place in the cell.

..... [1]

(iv) Complete the sentences to identify the negative electrode and the direction of electron flow when a current is drawn from the cell described in **(b)(ii)**.

The electrode is the negative electrode.

Electrons flow from the electrode to the electrode. [1]

(c) A molten Co^{2+} salt is electrolysed using a current of 0.500 A .

0.547 g of cobalt metal forms at the cathode. Under the conditions used no other reduction reaction occurs at the cathode.

Calculate the time in minutes for which the current flows to produce this mass of cobalt.

Give your answer to **three** significant figures.

$$\text{time} = \dots \text{ min} \quad [3]$$

[Total: 15]

[Turn over]

6 (a) Nickel forms complexes.

(i) Give the formula and charge of the tetrahedral complex formed by Ni atoms with carbon monoxide molecules. Carbon monoxide is a monodentate ligand. This is complex **E**.

E = [1]

(ii) Give the formula and charge of the octahedral complex formed by Ni^{2+} ions with ethanedioate ions. This is complex **F**.

F = [2]

(iii) Identify which complex, **E** or **F**, exists as a mixture of two stereoisomers and the type of stereoisomerism involved.

The complex which exists as a mixture of two stereoisomers is

The type of stereoisomerism involved is

[1]

(b) Cadmium forms complexes with methylamine, CH_3NH_2 , and 1,2-diaminoethane, *en*. The values of the stability constants, K_{stab} , of these complex ions are given in Table 6.1.

Table 6.1

complex	K_{stab}
$[\text{Cd}(\text{CH}_3\text{NH}_2)_4]^{2+}$	3.5×10^6
$[\text{Cd}(\text{en})_2]^{2+}$	4.0×10^{10}

(i) Explain, by reference to its structure, why CH_3NH_2 acts as a monodentate ligand.

..... [1]

(ii) Some Cd^{2+} (aq) is added to a solution containing equal concentrations of CH_3NH_2 and *en*.

Predict which of the two complexes in Table 6.1 forms at the higher concentration.

Explain your answer.

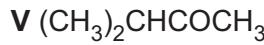
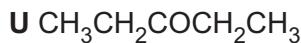
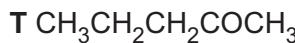
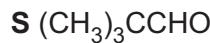
complex that forms at the higher concentration

explanation

..... [1]

(iii) Complete the expression for the K_{stab} of $[\text{Cd}(\text{CH}_3\text{NH}_2)_4]^{2+}$.

$K_{\text{stab}} =$





[1]

[Total: 7]

7 P, Q, R, S, T, U, and V are the seven structural isomers with molecular formula $C_5H_{10}O$ that have a carbonyl group.

(a) Only one of these seven compounds has stereoisomers.

Draw three-dimensional diagrams of the **two** stereoisomers of this compound.

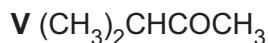
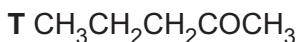
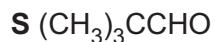
[2]

(b) P, Q, R, S, T, U, and V are treated separately with alkaline $I_2(aq)$ and the product mixture is acidified.

(i) Identify the **two** compounds that give a positive result with alkaline $I_2(aq)$.

..... and [1]

(ii) Describe the observations when **one** of the compounds you have identified in (b)(i) is treated with alkaline $I_2(aq)$ and give the structural formulae of the **two** carbon-containing products of this reaction.




observations

two carbon-containing products

and

[2]

(c) The proton (^1H) NMR spectra of P, Q, R, S, T, U, and V are compared.

(i) Identify the only compound that gives a spectrum with two singlets and no other peaks.

..... [1]

Fig. 7.1 shows the spectrum obtained from one of the compounds.

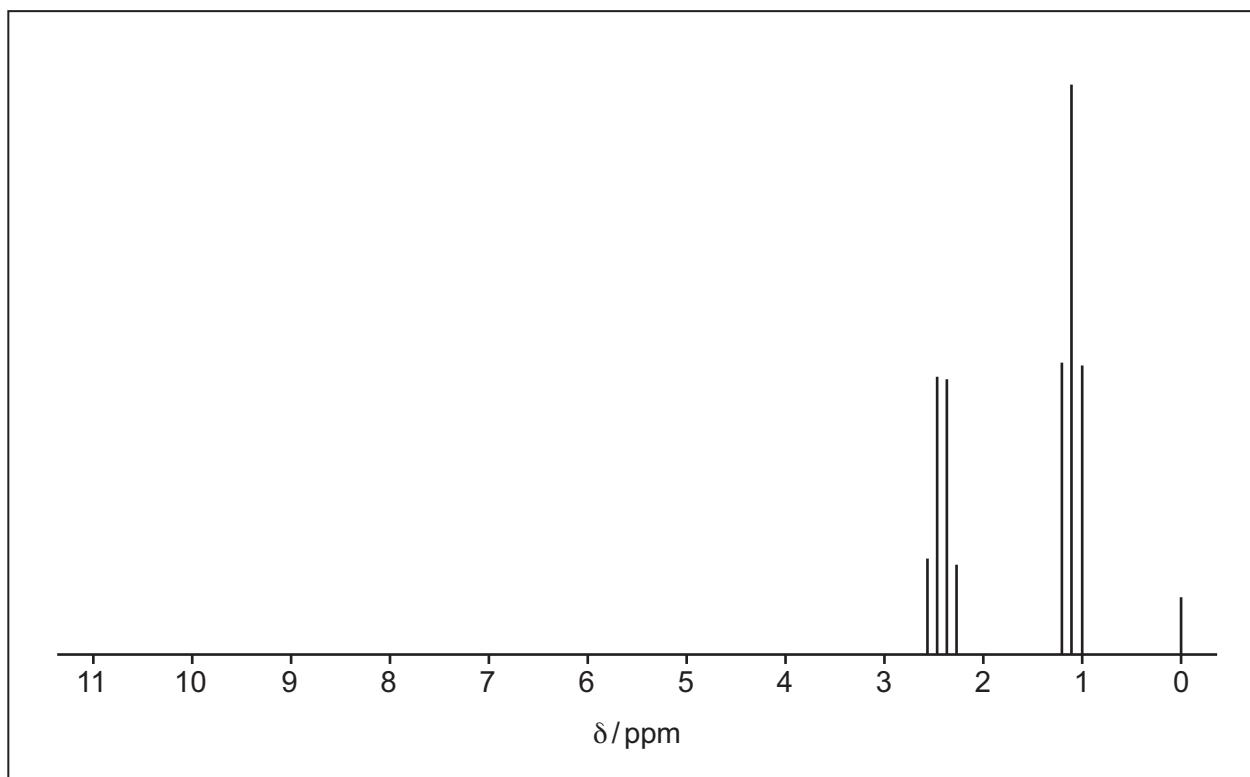


Fig. 7.1

(ii) Identify the compound that gives this spectrum.

..... [1]

(iii) Name the splitting pattern of the peak at $\delta = 1.1$ in Fig. 7.1.

Give the reason for this splitting.

name

reason

[1]

(iv) Identify the substance that gives the small peak at $\delta = 0$ in Fig. 7.1.

..... [1]

(d) The carbon-13 NMR spectra of **R**, **S**, **T** and **U** are compared.

Complete Table 7.1 to state the number of peaks in the spectrum of each compound.

Table 7.1

compound	number of peaks
R $(\text{CH}_3)_2\text{CHCH}_2\text{CHO}$	
S $(\text{CH}_3)_3\text{CCHO}$	
T $\text{CH}_3\text{CH}_2\text{CH}_2\text{COCH}_3$	
U $\text{CH}_3\text{CH}_2\text{COCH}_2\text{CH}_3$	

[2]

[Total: 11]

8 Asparagine and aspartic acid are two naturally occurring amino acids. Their structures and isoelectric points are shown in Table 8.1.

Table 8.1

amino acid	structure	isoelectric point
asparagine	$\text{HOOCCH}(\text{NH}_2)\text{CH}_2\text{CONH}_2$	5.41
aspartic acid	$\text{HOOCCH}(\text{NH}_2)\text{CH}_2\text{COOH}$	2.77

(a) Define isoelectric point.

.....
.....

[1]

(b) Draw the structures of asparagine and aspartic acid at pH 2.

asparagine at pH 2

aspartic acid at pH 2

[2]

(c) Asparagine and aspartic acid are treated separately with an excess of LiAlH_4 .

Draw the structures of the organic products of these reactions.

product of asparagine treated with an excess of LiAlH_4

product of aspartic acid treated with an excess of LiAlH_4

[2]

(d) Propanedioic acid, $\text{HOOCCH}_2\text{COOH}$, is treated with an excess of thionyl chloride, SOCl_2 . Propanediyl chloride, $\text{ClOCCH}_2\text{COCl}$, is formed.

(i) Write an equation for this reaction.

..... [1]

(ii) Propanediyl chloride reacts with an excess of asparagine to form compound **G** with molecular formula $\text{C}_{11}\text{H}_{16}\text{N}_4\text{O}_8$.

Each molecule of compound **G** has four amide groups.

Draw the structure of compound **G**.

Compound **G**, $\text{C}_{11}\text{H}_{16}\text{N}_4\text{O}_8$

[2]

(e) Asparagine is hydrolysed with an excess of hot $\text{NaOH}(\text{aq})$.

Draw the structure of the organic product of this reaction.

[2]

(f) A polymer can form from asparagine, $\text{HOOCCH}(\text{NH}_2)\text{CH}_2\text{CONH}_2$, as the only monomer.

Draw a length of the polymer chain containing **three** monomer residues.

Clearly label the repeat unit of the polymer on your diagram.

[3]

(g) Aspartic acid exists in two optically active forms.

(i) Plane polarised light is passed through pure samples of these two optically active forms in solutions of the same concentration.

Describe **two** similarities and **one** difference in their effect on the plane polarised light.

similarities

.....

difference

.....

[2]

(ii) Give the term used to describe a mixture of equal amounts of the two optically active forms.

..... [1]

[Total: 16]

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

Question 9 starts on page 20.

9 Compound X is made from benzene by the route shown in Fig. 9.1.

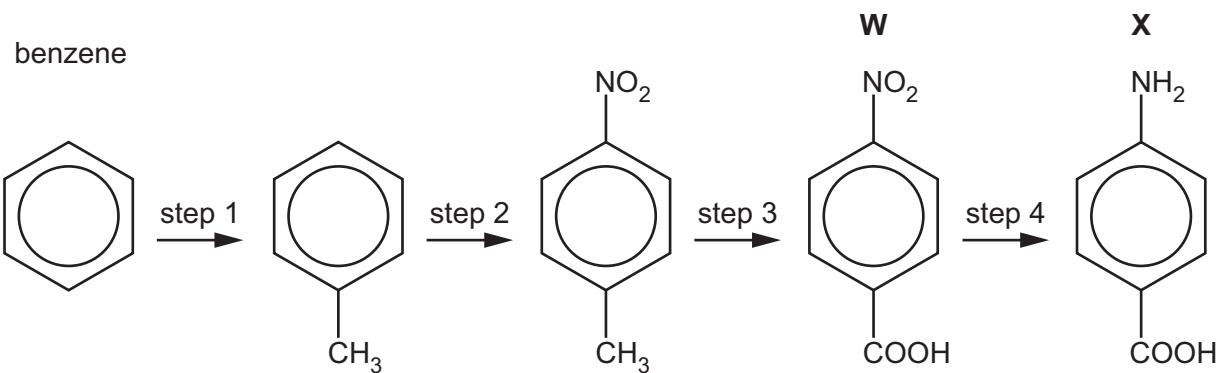


Fig. 9.1

(a) Describe the bonding in benzene, C_6H_6 .

Your answer should include:

- the hybridisation of the six carbon atoms
- the types of bond between the carbon atoms
- the orbitals that overlap to produce the bonds between the carbon atoms
- the type of bond between the carbon atoms and the hydrogen atoms
- the orbitals that overlap to produce the bonds between the carbon atoms and the hydrogen atoms.

(b) Describe the reagents and conditions required for step 1 in Fig. 9.1.

[1]

(c) In step 1 of Fig. 9.1 benzene reacts with $^+CH_3$.

Complete Fig. 9.2 to show the mechanism for this reaction, including:

- the movement of electron pairs using curly arrows
- the structure of the intermediate involved.

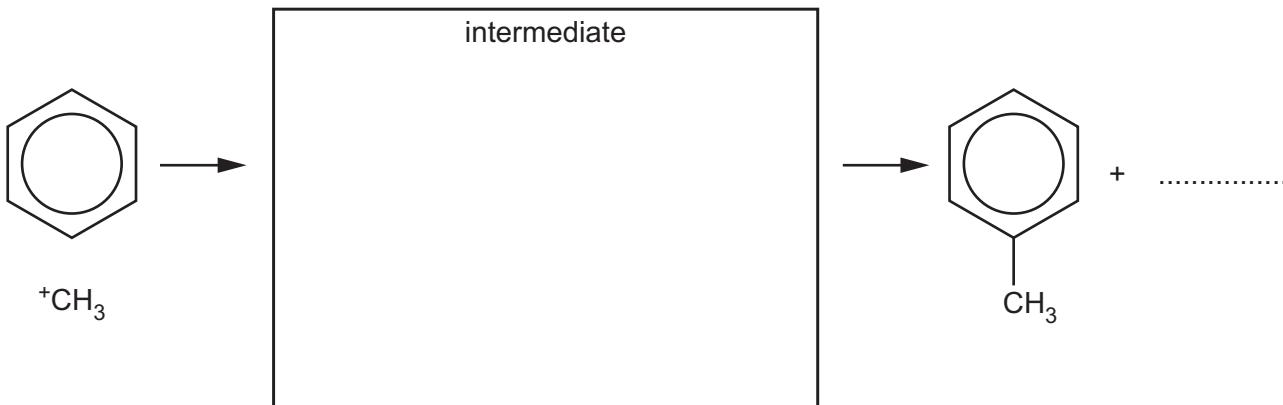


Fig. 9.2

[3]

(d) Describe the reagents and conditions required for step 2 of Fig. 9.1.

.....
..... [2]

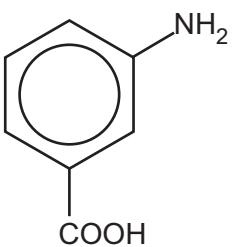
(e) Identify the reagents required for step 3 of Fig. 9.1. Compound **W** is the product of this step.

..... [1]

(f) Name compound **W**.

..... [1]

(g) The reagents commonly used for step 4 will **not** reduce the $-COOH$ group.


Identify the reagents and conditions required for step 4 of Fig. 9.1.

..... [1]

(h) Benzene can also be used as a starting material to make compound Y.

compound Y

Describe how the route described in Fig. 9.1 (repeated below) can be changed to give compound **Y** instead of compound **X**.

Explain your answer.

zene

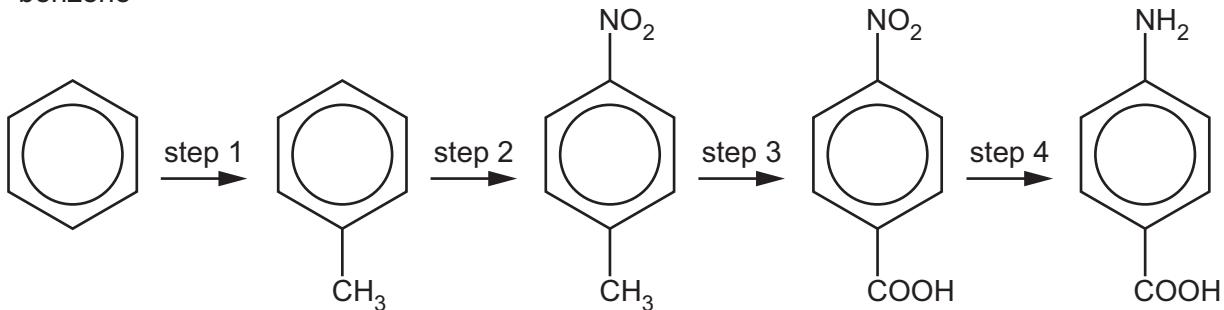


Fig. 9.1

[Total: 14]

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ ($4.18 \text{ J g}^{-1} \text{ K}^{-1}$)

The Periodic Table of Elements

1		2		Group																			
1		2		Group																			
1		2		Group																			
3	Li	4	Be	1	H	hydrogen	1.0																
11	Na	12	Mg	2																			
19	K	20	Ca	3	Sc	Scandium	45.0	21	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
37	Rb	38	Sr	4	Y	Yttrium	88.9	39	Nb	Ta	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Kr	
55	Cs	56	Ba	5	La	Lanthanoids	137.3	57–71	Hf	Ta	W	Re	Os	Pt	Au	Hg	Tl	In	Sn	Te	I	Xe	
87	Fr	88	Ra	6	Pr	Praseodymium	140.9	72	Ta	W	Ir	Rhenium	186.2	192.2	195.1	197.0	198.4	207.2	209.0	Bi	Po	At	Rn
				7	Pa	Protactinium	231.0	73	Ta	W	Os	Osmium	190.2	192.2	195.1	197.0	198.4	207.2	209.0	Bi	Po	At	Rn
				8	U	Uranium	238.0	106	Db	Sg	Seaborgium	Seaborgium	107	108	109	110	111	112	113	114	115	116	117
				9	Rf	Rutherfordium	–	104	Db	Dubnium	Dubnium	–	105	106	107	108	109	110	111	112	113	114	115
				10				103															
				11				102															
				12				101															
				13				100															
				14				99															
				15				98															
				16				97															
				17				96															
				18				95															
				19				94															
				20				93															
				21				92															
				22				91															
				23				90															
				24				89															
				25				88															
				26				87															
				27				86															
				28				85															
				29				84															
				30				83															
				31				82															
				32				81															
				33				80															
				34				79															
				35				78															
				36				77															
				37				76															
				38				75															
				39				74															
				40				73															
				41				72															
				42				71															
				43				70															
				44				69															
				45				68															
				46				67															
				47				66															
				48				65															
				49				64															
				50				63															
				51				62															
				52				61															
				53				60															
				54				59															
				55				58															
				56				57															
				57				56															
				58				55															
				59				54															
				60				53															
				61				52															
				62				51															
				63				50															
				64				49															
				65				48															
				66				47															
				67				46															
				68				45															
				69				44															
				70				43															
				71				42															
				72				41															
				73				40															
				74				39															
				75				38															
				76				37															
				77				36															
				78				35															
				79				34															
				80				33															
				81				32															
				82				31															
				83				30															
				84				29															
				85				28															
				86				27															
				87				26															
				88				25															
				89				24															
				90				23															
				91				22															
				92				21															
				93				20															
				94				19															
				95				18															