

Cambridge International AS & A Level

CANDIDATE
NAMECENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**9701/44**

Paper 4 A Level Structured Questions

October/November 2025**2 hours**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has **24** pages.

1 (a) Define a transition element.

.....
.....
.....

[1]

(b) The 3d orbitals in an isolated gaseous Cu^{2+} ion are degenerate.

(i) Define the term degenerate.

.....
.....

[1]

(ii) Complete the electronic configuration of Cu^{2+} .

$1s^2$

[1]

(c) (i) State the colours of the aqueous solutions for the **two** copper(II) complex ions shown.

• $[\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+}(\text{aq})$

• $[\text{CuCl}_4]^{2-}(\text{aq})$

[1]

(ii) Explain why aqueous complex ions of transition elements are usually coloured.

.....
.....
.....
.....
.....
.....
.....

[3]

(d) (i) When an excess of $\text{NH}_3(\text{aq})$ is added to a solution of $[\text{CuCl}_4]^{2-}(\text{aq})$, $[\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+}(\text{aq})$ is formed.

State the type of reaction.

Complete the equation for this reaction. State symbols are **not** required.

type of reaction

equation

$[\text{CuCl}_4]^{2-} + \dots \rightarrow [\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+} + \dots$

[2]

(ii) The $[\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+}$ complex ion shows stereoisomerism.

Complete the three-dimensional diagrams in Fig. 1.1 to show the **two** different stereoisomers of $[\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+}$.

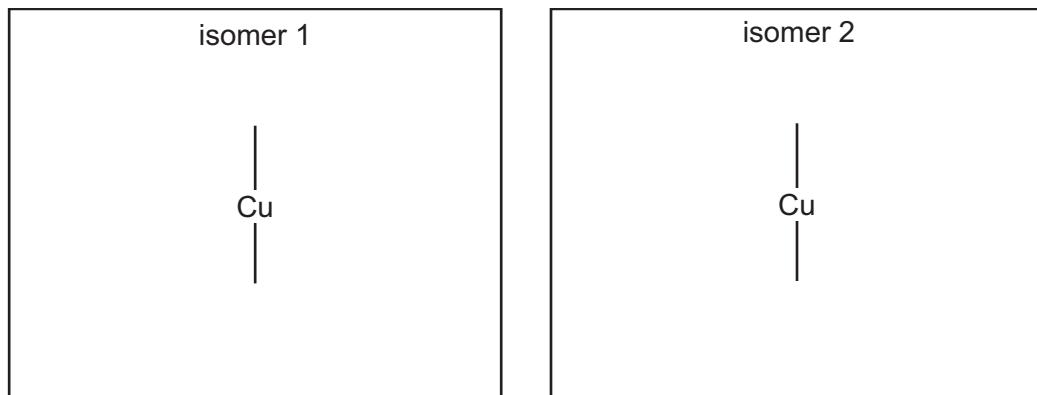
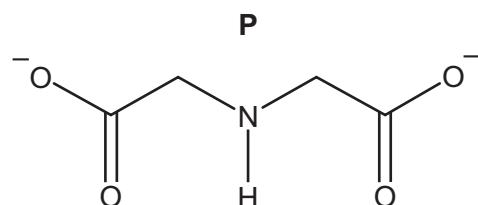


Fig. 1.1

[2]

(iii) Deduce which stereoisomer in (d)(ii) is polar.


Explain your answer.

polar isomer

explanation

[1]

(e) The dianion **P** can act as a tridentate ligand.

(i) Suggest how **P** can form **three** dative covalent bonds.

.....
.....
.....

[1]

(ii) 2 moles of dianion **P**, $\text{C}_4\text{H}_5\text{NO}_4^{2-}$, react with 1 mole of aqueous cobalt(III) ions, $[\text{Co}(\text{H}_2\text{O})_6]^{3+}$ to form 1 mole of complex ion **Q**.

Deduce the formula and charge of **Q**.

.....

[1]

(f) Table 1.1 shows values for the stability constants, K_{stab} , of some silver(I) complexes.

Table 1.1

complex	value of K_{stab}
$[\text{Ag}(\text{CN})_2]^-$ (aq)	1.1×10^{18}
$[\text{Ag}(\text{NH}_3)_2]^+$ (aq)	1.2×10^7
$[\text{Ag}(\text{S}_2\text{O}_3)_2]^{3-}$ (aq)	2.9×10^{13}

(i) Define the stability constant of a complex.

.....
.....
..... [1]

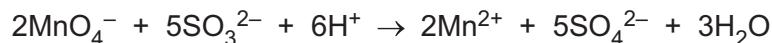
(ii) Use the information in Table 1.1 to identify the most stable silver(I) complex.

Explain your answer.

most stable

explanation

..... [1]



(g) Sodium sulfite, Na_2SO_3 , is used as a food preservative.

A 3.75 g sample of impure Na_2SO_3 is dissolved in distilled water and made up to 250 cm³ in a volumetric flask.

10.0 cm³ of this solution requires 18.70 cm³ of acidified 0.0150 mol dm⁻³ MnO_4^- (aq) to reach the end-point.

The equation for the reaction is shown.

Calculate the percentage by mass of Na_2SO_3 in the sample.

percentage by mass of Na_2SO_3 = [3]

[Total: 19]

2 (a) The Group 2 sulfates and the Group 2 chromates show similar trends in solubility.

Suggest the trend in the solubility of the Group 2 chromates down the group.

Explain your answer.

.....
.....
.....
.....
.....
.....

[4]

(b) Silver(I) chromate, Ag_2CrO_4 , is sparingly soluble in water.

(i) Write an ionic equation to show the equilibrium between solid Ag_2CrO_4 and its aqueous solution.

Include state symbols.

..... [1]

(ii) The value of the solubility product, K_{sp} , of Ag_2CrO_4 is 1.12×10^{-12} at 298 K.

Calculate the equilibrium concentration of Ag^+ , in mol dm^{-3} , in a saturated solution of Ag_2CrO_4 at 298 K.

$$\text{equilibrium concentration of } \text{Ag}^+ = \dots \text{ mol dm}^{-3} \quad [3]$$

(c) The hydrogenchromate ion, HCrO_4^- , is a weak acid. The $\text{p}K_a$ of HCrO_4^- is 6.49.

(i) Calculate the pH of a $0.0250 \text{ mol dm}^{-3}$ HCrO_4^- solution.

$$\text{pH} = \dots \quad [2]$$

(ii) HCrO_4^- can show amphoteric behaviour.

State the formula of:

- the conjugate acid of HCrO_4^-
- the conjugate base of HCrO_4^-

[1]

(d) Table 2.1 shows some energy changes.

Table 2.1

energy change	value / kJ mol^{-1}
first ionisation energy of silver	+731
second ionisation energy of silver	+2074
first ionisation energy of sulfur	+1000
second ionisation energy of sulfur	+2251
first electron affinity of sulfur	-200
second electron affinity of sulfur	+532
enthalpy change of atomisation of sulfur	+279
enthalpy change of formation of silver(I) sulfide, $\text{Ag}_2\text{S}(\text{s})$	-33
lattice energy of silver(I) sulfide, $\text{Ag}_2\text{S}(\text{s})$	-2677

(i) Define the term first electron affinity.

.....
.....
.....

[1]

(ii) Explain why the value for the second electron affinity of sulfur is positive.

.....
.....
.....

[1]

(iii) Construct an equation for the lattice energy of Ag_2S .

Include state symbols.

.....

[1]

DO NOT WRITE IN THIS MARGIN

(iv) Calculate the enthalpy change of atomisation, ΔH_{at} , in kJ mol^{-1} , of silver using relevant data from Table 2.1.

It may be helpful to draw a labelled Born–Haber cycle.

Show your working.

$$\Delta H_{\text{at}} \text{ of silver} = \dots \text{ kJ mol}^{-1} \quad [3]$$

(e) Suggest how the magnitude for the lattice energy of $\text{Ag}_2\text{S}(\text{s})$ differs from the lattice energy of $\text{Cu}_2\text{S}(\text{s})$.

Explain your answer.

.....
.....
.....

[1]

[Total: 18]

3 (a) Define the term entropy.

.....
.....

[1]

(b) (i) Place **one** tick (✓) in each row of Table 3.1 to show the sign of the entropy change, ΔS , for each process.

Table 3.1

process	ΔS is negative	ΔS is positive
steam condensing into water		
solid KCl dissolving in water		

[1]

(ii) Chlorine trifluoride, ClF_3 , decomposes on heating into its elements, as shown.

Standard entropies are shown in Table 3.2.

Table 3.2

substance	$ClF_3(g)$	$Cl_2(g)$	$F_2(g)$
$S^\ominus / JK^{-1} mol^{-1}$	+281.6	+223.1	+203.0

Calculate the standard entropy change, ΔS^\ominus , in $JK^{-1} mol^{-1}$, for reaction 1.

$$\Delta S^\ominus \text{ for reaction 1} = \dots \text{ } JK^{-1} mol^{-1} \quad [2]$$

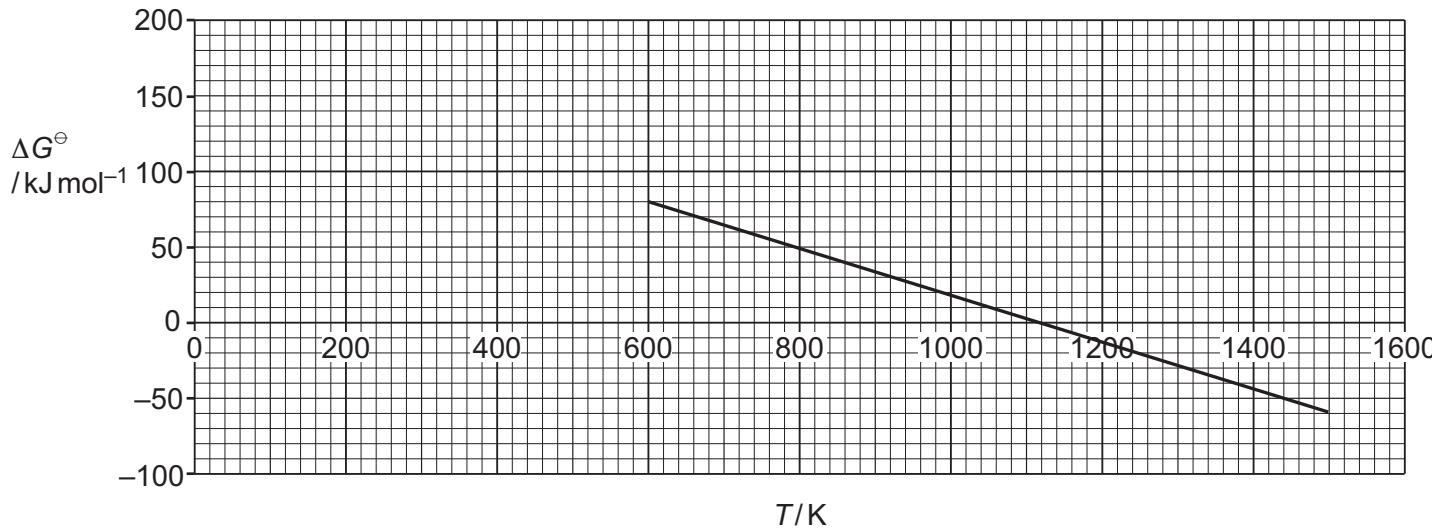
(c) Group 2 carbonates decompose on heating. The decomposition for one of the Group 2 carbonates, MCO_3 , is shown in reaction 2.

(i) Predict the sign of the entropy change, ΔS , for reaction 2.

Explain your answer.

.....
.....

[1]



(ii) The Gibbs equation is shown.

$$\Delta G^\ominus = \Delta H^\ominus - T\Delta S^\ominus$$

Fig. 3.1 shows values of the Gibbs free energy change, ΔG^\ominus , in kJ mol^{-1} , at different temperatures, T , in K, for reaction 2.

Assume ΔH^\ominus and ΔS^\ominus values for this reaction remain constant over this temperature range.

Fig. 3.1

Use the gradient and intercept on the y -axis in Fig. 3.1 and the Gibbs equation to determine:

- ΔS^\ominus , in $\text{JK}^{-1} \text{mol}^{-1}$, for reaction 2
- the minimum temperature, T , in K, at which the reaction is feasible
- ΔH^\ominus , in kJ mol^{-1} , for reaction 2.

$$\Delta S^\ominus \text{ for reaction 2} = \dots \text{JK}^{-1} \text{mol}^{-1}$$

$$\text{minimum temperature, } T = \dots \text{K}$$

$$\Delta H^\ominus \text{ for reaction 2} = \dots \text{kJ mol}^{-1}$$

[4]

[Total: 9]

[Turn over]

4 (a) Nitrogen monoxide, NO, reacts with hydrogen, as shown in reaction 3.

(i) The rate equation for reaction 3 is shown.

$$\text{rate} = k[\text{H}_2][\text{NO}]^2$$

Complete Table 4.1.

Table 4.1

the order of reaction with respect to $[\text{H}_2]$	
the order of reaction with respect to $[\text{NO}]$	
the overall order of the reaction	

[1]

(ii) Predict how the initial rate for reaction 3 changes when the concentration of NO is halved.

..... [1]

(iii) Predict how the initial rate for reaction 3 changes when the concentrations of NO and H_2 are both increased **three** times.

..... [1]

(iv) Suggest why reaction 3 is unlikely to proceed by a mechanism involving only a single step.

.....

..... [1]

(v) Suggest equations for the **three** steps of the reaction mechanism for reaction 3.

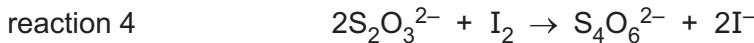
Each step involves a reaction between **two** molecules.

step 1 \rightarrow

step 2 + \rightarrow N_2O +

step 3 $\text{N}_2\text{O} + \dots \rightarrow \dots + \dots$

[2]


(vi) Suggest the role of N_2O in this mechanism.

Explain your reasoning.

..... [1]

(b) Iodine, I_2 , reacts with thiosulfate ions, $S_2O_3^{2-}$, as shown in reaction 4.

Reaction 4 is carried out in the presence of a large excess of I_2 . Under these conditions, the reaction is first order with respect to $[S_2O_3^{2-}]$ and zero order with respect to $[I_2]$.

The half-life, $t_{\frac{1}{2}}$, for reaction 4 is 720 s under certain conditions.

Calculate the value of the rate constant, k , for reaction 4. Include the units of k .

$k = \dots$ units [1]

(c) The reaction between iodide ions, $I^-(aq)$, and peroxydisulfate ions, $S_2O_8^{2-}(aq)$, is catalysed by $Co^{3+}(aq)$. The mechanism is similar to the mechanism of this reaction when $Fe^{3+}(aq)$ is used as the catalyst.

(i) State the type of catalysis that occurs in this reaction.

Explain your reasoning.

.....
..... [1]

(ii) Write **two** equations to show how $Co^{3+}(aq)$ catalyses this reaction.

equation 1

equation 2

[2]

(iii) Suggest why this reaction is slow in the absence of $Co^{3+}(aq)$.

.....
..... [1]

[Total: 12]

5 (a) Describe and explain the shape of benzene.

In your answer, include:

- the shape and bond angle in the ring
- the hybridisation of the carbon atoms
- how orbital overlap forms σ and π bonds between the carbon atoms in the ring.

〔4〕

(b) Fig. 5.1 shows two reactions of benzoic acid.

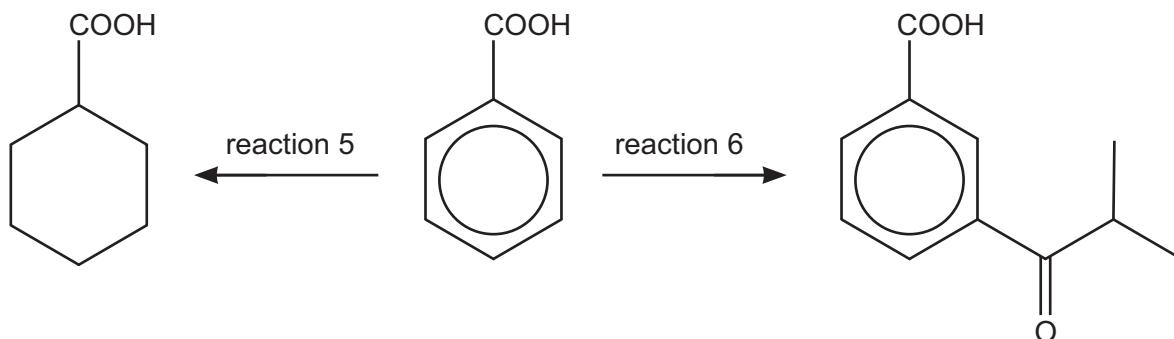


Fig. 5.1

(i) Suggest reagents and conditions for reaction 5 and for reaction 6 in Fig. 5.1.

reaction 5

reaction 6

[2]

(ii) State the type of reaction for reaction 5 in Fig. 5.1.

(c) In the electrophilic substitution of arenes, different substituents can direct to different ring positions.

(i) Describe the directing effect of the $-\text{CH}_2\text{CH}_3$ group.

Explain your answer.

.....
..... [1]

(ii) The alkylation of arenes uses a mixture of $\text{CH}_3\text{CH}_2\text{Br}$ and FeBr_3 to generate the CH_3CH_2^+ electrophile.

Write an equation for the formation of the CH_3CH_2^+ electrophile.

..... [1]

(iii) Complete the mechanism in Fig. 5.2.

Include all relevant curly arrows and charges. Draw the structure of the organic intermediate.

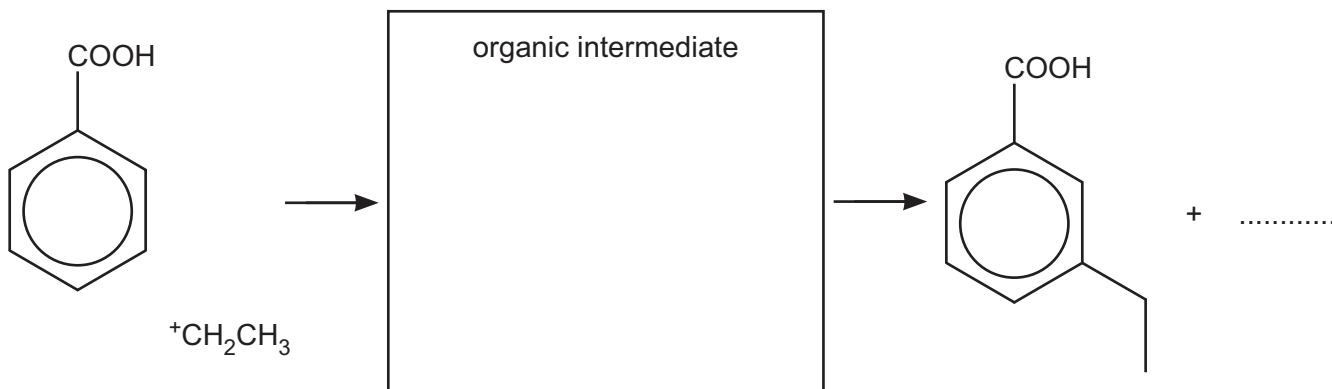
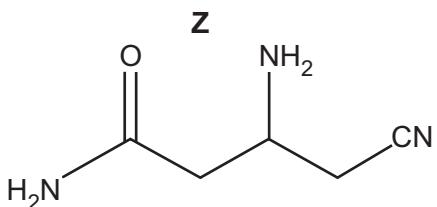


Fig. 5.2


[3]

(iv) Write an equation to show how FeBr_3 is regenerated after the reaction in Fig. 5.2.

..... [1]

[Total: 13]

6 (a) Compound **Z** is used in organic synthesis.

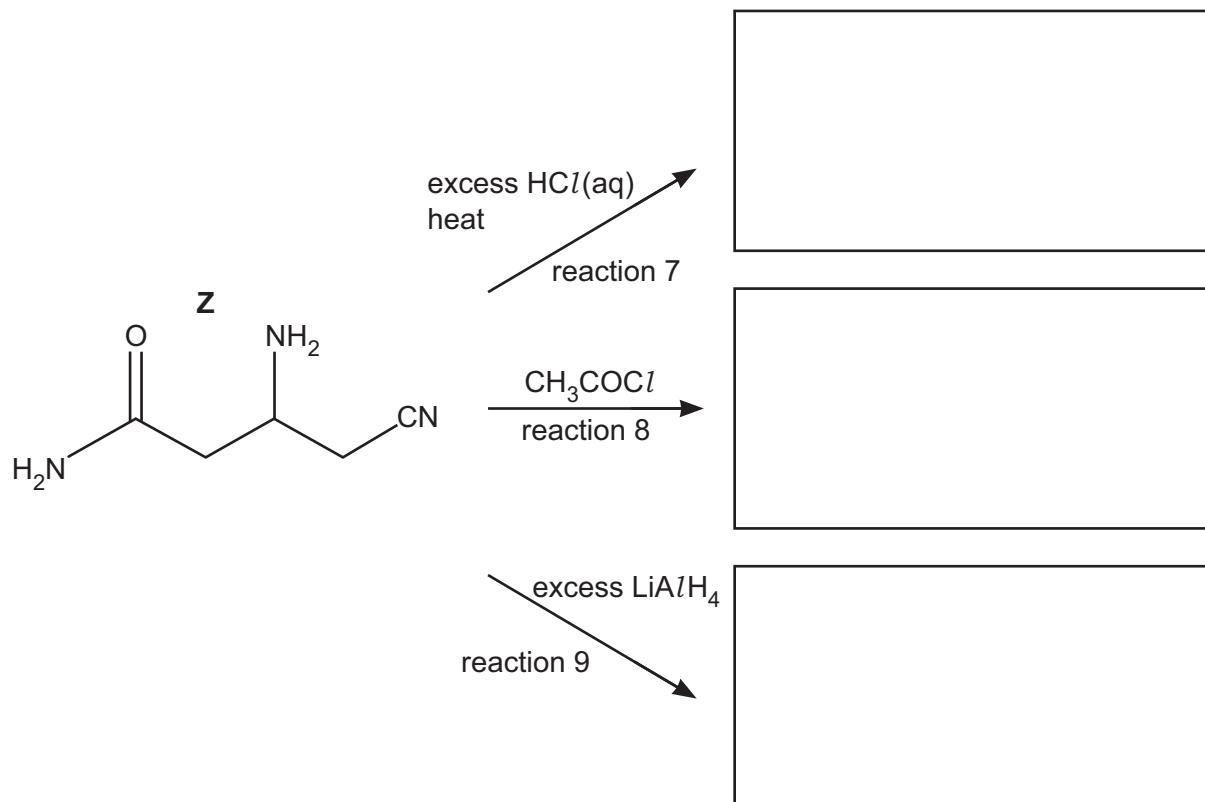

Complete Table 6.1 to show the number of sp, sp² and sp³ hybridised carbon atoms present in one molecule of **Z**.

Table 6.1

type of hybridisation	sp	sp ²	sp ³
number of carbon atoms			

[1]

(b) **Z** can undergo different reactions, as shown in Fig. 6.1.

Fig. 6.1

(i) Name the **two** types of reaction occurring in reaction 7 in Fig. 6.1.

..... and [1]

(ii) Draw the structures of the organic products of reactions 7, 8 and 9 in Fig. 6.1. [4]

(c) Compound **Z** is dissolved in D_2O and analysed by carbon-13 NMR and proton (1H) NMR spectroscopy.

(i) Predict the number of peaks in the carbon-13 NMR spectrum of **Z**.

..... [1]

(ii) The proton (1H) NMR spectrum of **Z** in D_2O gives three peaks for the proton environments, labelled **a**, **b** and **c**, as shown on Fig. 6.2.

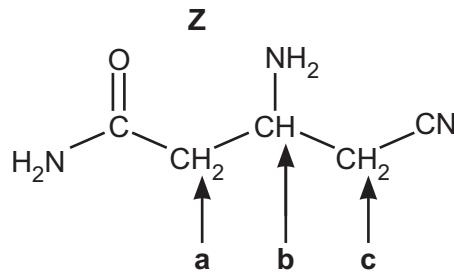


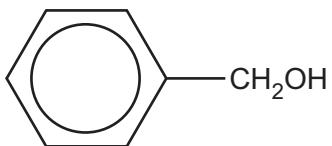
Fig. 6.2

Complete Table 6.2 for the proton (1H) NMR spectrum of **Z** in D_2O .

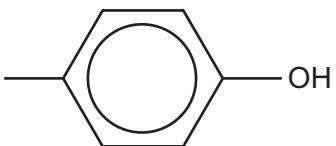
Table 6.2

proton environment	a	b	c
name of splitting pattern			
chemical shift range, δ /ppm			

[2]


Table 6.3

environment of proton	example	chemical shift range, δ /ppm
alkane	$-\text{CH}_3$, $-\text{CH}_2-$, $>\text{CH}-$	0.9–1.7
alkyl next to C=O	$\text{CH}_3-\text{C=O}$, $-\text{CH}_2-\text{C=O}$, $>\text{CH}-\text{C=O}$	2.2–3.0
alkyl next to nitrile	$-\text{CH}_2-\text{CN}$	2.0–3.0
alkyl next to electronegative atom	CH_3-O , $-\text{CH}_2-\text{O}$, $-\text{CH}_2-\text{N}$	3.2–4.0
attached to alkene	$=\text{CHR}$	4.5–6.0
alkyl amine	$\text{R}-\text{NH}-$	1.0–5.0
amide	RCONHR	5.0–12.0


[Total: 9]

7 Phenylmethanol and 4-methylphenol are isomers.

phenylmethanol

4-methylphenol

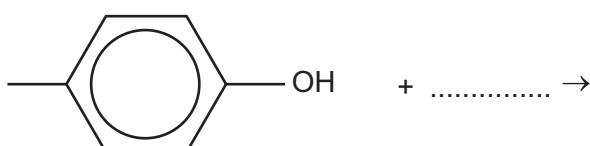
(a) Complete Table 7.1 to show the relative acidities of benzoic acid (C_6H_5COOH), phenylmethanol, 4-methylphenol and water.

Explain your answer.

Table 7.1

most acidic
↓
least acidic

name of compound


explanation

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

[4]

(b) 4-methylphenol reacts readily with sodium.

Complete the equation for this reaction.

[1]

(c) Under certain conditions, ethane-1,2-diol, $\text{HOCH}_2\text{CH}_2\text{OH}$, reacts with propane-1,3-dioic acid, $\text{HOOCCH}_2\text{COOH}$, to form different organic products, as shown in Fig. 7.1.

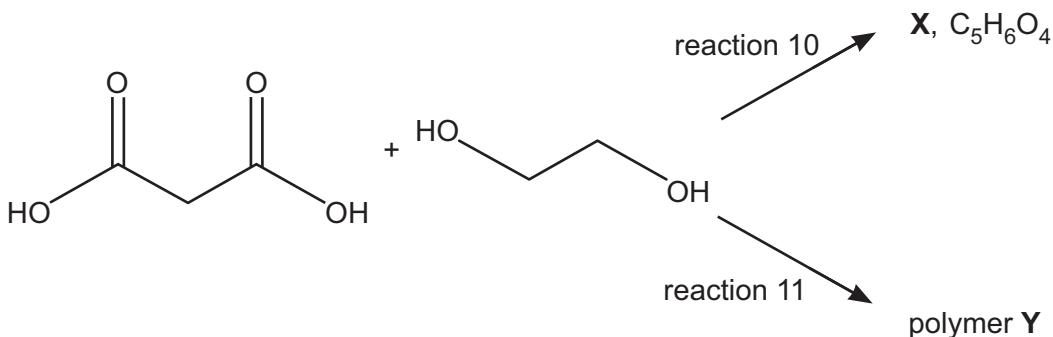


Fig. 7.1

(i) X does **not** react with Na metal.

Draw the structure of the organic product X, C₅H₆O₄, shown in Fig. 7.1.

[1]

(ii) Reactions 10 and 11 in Fig. 7.1 are different types of reaction.

Name the type of reaction for reaction 10 and for reaction 11.

reaction 10

reaction 11

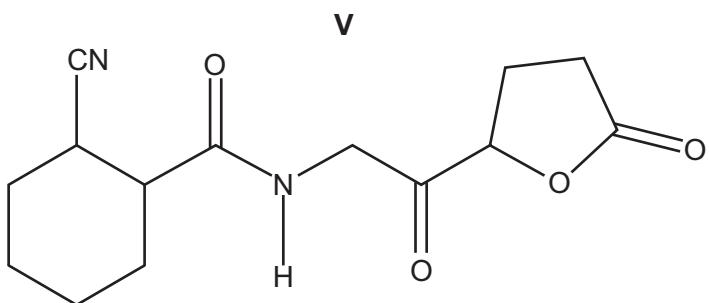
[1]

(iii) Draw a section of polymer Y showing only **one** repeat unit.

The new functional group formed should be displayed.

[2]

[Total: 9]
[Turn over]



8 (a) Describe the difference in reactivity between ethanoyl chloride and chlorobenzene with water.

Explain your answer.

.....

 [2]

(b) The structure of compound **V** is shown.

(i) Name all the functional groups in **V**.

.....

 [2]

(ii) Deduce the number of possible optical isomers for **V**.

..... [1]

(iii) Suggest **one** reason, other than better biological activity and lower dosage required, why it is beneficial to synthesise a single optical isomer of **V** for use as a drug.

.....

 [1]

(c) A sample of **V** is hydrolysed with an excess of hot aqueous alkali.

The products are isolated from the reaction mixture at pH 12.

Draw the structures of the **two** organic products of the **complete** alkaline hydrolysis of **V** in Fig. 8.1.

Fig. 8.1

[3]

(d) A polypeptide formed from four amino acids, **A**, **B**, **C** and **D**, is completely hydrolysed and then analysed by gas-liquid chromatography.

The chromatogram produced is shown in Fig. 8.2.

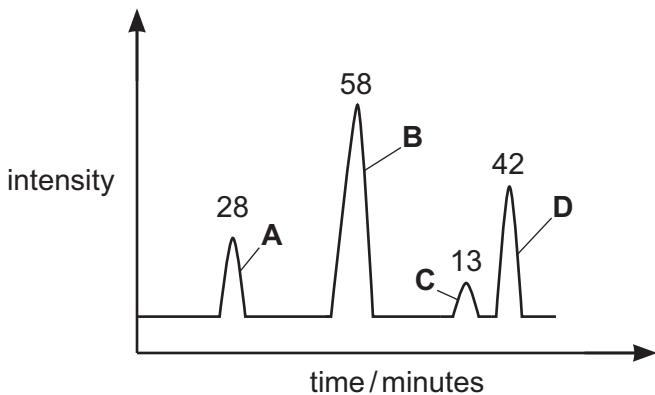


Fig. 8.2

The number above each peak represents the area under the peak.

The area under each peak is proportional to the mass of the respective amino acid in the mixture.

(i) Calculate the percentage by mass of amino acid **A** in the original mixture.

percentage by mass of amino acid **A** = [1]

(ii) The retention time for amino acid **D** is the longest.

Explain why **D** has a longer retention time than the **other** amino acids **A**, **B** and **C**.

.....
.....
.....
..... [1]

[Total: 11]

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ ($4.18 \text{ J g}^{-1} \text{ K}^{-1}$)

The Periodic Table of Elements

1		2		Group																		
1		2		Group																		
1		2		Group																		
3	Li	4	Be	1	H	hydrogen	1.0															
11	Na	12	Mg	2																		
19	K	20	Ca	3	Sc	21	Ti	22	V	23	Cr	24	Mn	25	Fe	26	Co	27	Ni	28	Zn	29
39.1	potassium	40.1	calcium	45.0	scandium	45.0	titanium	47.9	vanadium	50.9	chromium	52.0	manganese	54.9	iron	55.8	cobalt	58.9	nickel	58.7	gallium	69.7
37	Rb	38	Sr	40	Y	41	Nb	42	Mo	43	Tc	44	Ru	45	Rh	46	Pd	47	Ag	48	Ge	72.6
85.5	rubidium	87.6	strontium	88.9	yttrium	88.9	niobium	91.2	mo	95.9	technetium	—	ruthenium	101.1	rhodium	102.9	palladium	106.4	silver	107.9	germanium	74.9
55	Cs	56	Ba	57–71	lanthanoids	72	Ta	73	W	74	Re	75	Ir	76	Os	77	Pt	78	Hg	79	In	80
132.9	caesium	137.3	barium	178.5	hafnium	180.9	lanthanum	180.9	tungsten	183.8	rhodium	186.2	osmium	190.2	iridium	192.2	platinum	195.1	gold	197.0	cadmium	114.8
87	Fr	88	Ra	89–103	actinoids	104	Db	105	Sg	106	Bh	107	Hs	108	Mt	109	Ds	110	Rg	111	Tl	112
—	francium	—	radium	—	rutherfordium	—	dubnium	—	seaborgium	—	bohrium	—	hassium	—	meitnerium	—	damascinium	—	roentgenium	—	thallium	112.4
57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68
138.9	lanthanum	140.1	cerium	140.9	praseodymium	144.2	neodymium	144.2	promethium	—	samarium	150.4	euroopium	152.0	gadolinium	157.3	terbium	158.9	dysprosium	162.5	holmium	164.9
89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Fm	100
—	actinium	—	thorium	232.0	protactinium	231.0	uranium	238.0	neptunium	—	plutonium	—	americium	—	curium	—	berkelium	—	californium	—	einsteiniun	—

lanthanoids	57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68	Tm	69	Yb	70	Lu
actinoids	89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Fm	100	Md	101	No	102	Lr

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

