

Cambridge International AS & A Level

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY

9701/52

Paper 5 Planning, Analysis and Evaluation

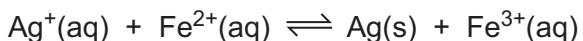
October/November 2025

1 hour 15 minutes

You must answer on the question paper.

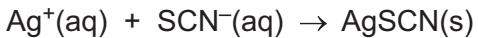
No additional materials are needed.

INSTRUCTIONS


- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.


This document has **16** pages. Any blank pages are indicated.

1 Aqueous silver ions, $\text{Ag}^+(\text{aq})$, react slowly with aqueous iron(II) ions, $\text{Fe}^{2+}(\text{aq})$. An equilibrium is established.

The concentration of $\text{Ag}^+(\text{aq})$ at equilibrium can be determined by titration with a standard solution of aqueous potassium thiocyanate, $\text{KSCN}(\text{aq})$.

During the titration, the remaining $\text{Ag}^+(\text{aq})$ ions react with $\text{SCN}^-(\text{aq})$ ions to form a precipitate of $\text{AgSCN}(\text{s})$.

When all $\text{Ag}^+(\text{aq})$ ions have been removed from solution, excess $\text{SCN}^-(\text{aq})$ ions react with $\text{Fe}^{3+}(\text{aq})$ to form a complex ion, $\text{FeSCN}^{2+}(\text{aq})$, which has a red colour.

The appearance of the red colour indicates the end-point.

A student carries out an experiment to determine the equilibrium constant, K_c .

$$K_c = \frac{[\text{Fe}^{3+}(\text{aq})]_{\text{eqm}}}{[\text{Fe}^{2+}(\text{aq})]_{\text{eqm}} [\text{Ag}^+(\text{aq})]_{\text{eqm}}}$$

The student makes 250.0 cm^3 of $0.0200 \text{ mol dm}^{-3}$ $\text{KSCN}(\text{aq})$ to use in the titration.

(a) Calculate the mass of solid potassium thiocyanate, $\text{KSCN}(\text{s})$, needed to make 250.0 cm^3 of $0.0200 \text{ mol dm}^{-3}$ $\text{KSCN}(\text{aq})$.

mass of $\text{KSCN}(\text{s})$ = g [1]

(b) Describe how the student should make 250.0 cm^3 of $0.0200 \text{ mol dm}^{-3}$ KSCN(aq) starting from the mass of KSCN(s) calculated in (a) in a 50 cm^3 beaker.

Give the name and size of any key apparatus used.

Write your answer using a series of numbered steps.

.....
.....
.....
.....
.....
.....
.....

[3]

(c) The student uses the following method to determine K_c .

step 1 Add 25.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ aqueous silver nitrate, AgNO_3 (aq), into a dry conical flask. Label this flask **A**.

step 2 Add 25.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ aqueous iron(II) sulfate, FeSO_4 (aq), into flask **A**.

step 3 Seal flask **A**, using a bung.

step 4 Allow flask **A** to stand for twelve hours.

step 5 Transfer 10.0 cm^3 of the mixture from flask **A** into another conical flask, flask **B**, without disturbing the precipitate in flask **A**.

step 6 Titrate the sample in flask **B** with $0.0200 \text{ mol dm}^{-3}$ aqueous potassium thiocyanate, KSCN(aq).

step 7 Repeat steps 5 and 6 until concordant values are obtained.

(i) Suggest why flask **A** is sealed with a bung in step 3.

.....
.....

[1]

(ii) Suggest why flask **A** is left to stand for twelve hours in step 4.

.....
.....

[1]

(iii) Identify the precipitate in flask **A** in step 5.

.....

[1]

(d) The student's results are shown in Table 1.1

Table 1.1

	rough titration	titration 1	titration 2	titration 3
final burette reading/cm ³	22.50	21.75	31.65	32.20
initial burette reading/cm ³	0.00	0.00	9.75	10.20
titre/cm ³	22.50	21.75	21.90	22.00

(i) State if concordant titres have been achieved.

Explain your answer.

..... [1]

(ii) Calculate the percentage error in the titre volume in titration 2.

Show your working.

percentage error = [1]

(iii) The student repeats the experiment using KSCN(aq) at a **higher** concentration. The student obtains **smaller** titres.

Suggest **one** reason why a larger titre is better than a smaller titre.

..... [1]

(e) Another student calculates a mean titre of 21.85 cm^3 . Use this value to complete the following calculation.

(i) Calculate $[\text{Ag}^+(\text{aq})]$ in the equilibrium mixture in flask A.

$$[\text{Ag}^+(\text{aq})]_{\text{eqm}} = \dots \text{ mol dm}^{-3} \quad [1]$$

(ii) Calculate $[\text{Fe}^{3+}(\text{aq})]$ in the equilibrium mixture in flask A.

$$[\text{Fe}^{3+}(\text{aq})]_{\text{eqm}} = \dots \text{ mol dm}^{-3} \quad [1]$$

(iii) The formula for the equilibrium constant, K_c , is shown.

$$K_c = \frac{[\text{Fe}^{3+}(\text{aq})]_{\text{eqm}}}{[\text{Fe}^{2+}(\text{aq})]_{\text{eqm}} [\text{Ag}^+(\text{aq})]_{\text{eqm}}}$$

Determine the value of K_c .

Give the units of K_c .

$$K_c = \dots$$

units

[2]

(f) Several other students perform the same experiment at different temperatures. The K_c values that they obtain are used to produce the graph in Fig. 1.1.

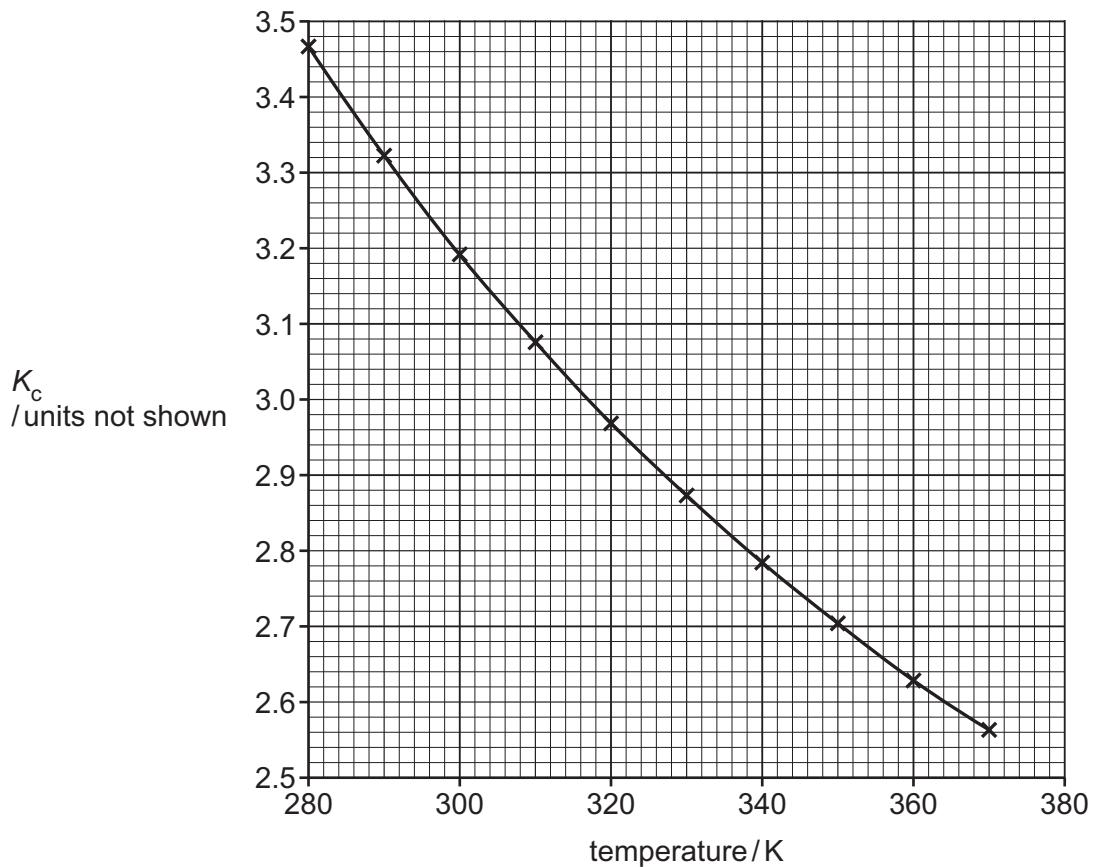


Fig. 1.1

(i) One student suggests that K_c is directly proportional to temperature.

State and explain if the results displayed in Fig. 1.1 support this suggestion.

.....

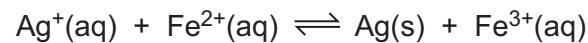
.....

[1]

(ii) Another student suggests that the data represented in the graph in Fig. 1.1 is reliable.

Explain how the graph supports this suggestion.

.....


.....

[1]

DO NOT WRITE IN THIS MARGIN

(iii) Use the data displayed in Fig. 1.1 to state if the forward reaction is exothermic or endothermic.

Explain your answer.

forward reaction

explanation

.....

.....

[1]

[Total: 17]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

2 A student carries out an experiment to determine the concentration of aqueous sulfate ions, $\text{SO}_4^{2-}(\text{aq})$, in a sample of lake water.

(a) The student uses the following method.

step 1 Transfer 25.00 cm^3 of the lake water sample to a beaker and record its conductivity as shown in Fig. 2.1.

step 2 Add 5.00 cm^3 of $0.100 \text{ mol dm}^{-3}$ aqueous barium hydroxide, $\text{Ba}(\text{OH})_2(\text{aq})$, to the beaker.

step 3 Stir the mixture and record the conductivity of the contents of the beaker as shown in Fig. 2.1.

step 4 Repeat steps 2 and 3 until a total of 40.00 cm^3 of $0.100 \text{ mol dm}^{-3}$ $\text{Ba}(\text{OH})_2(\text{aq})$ has been added to the beaker.

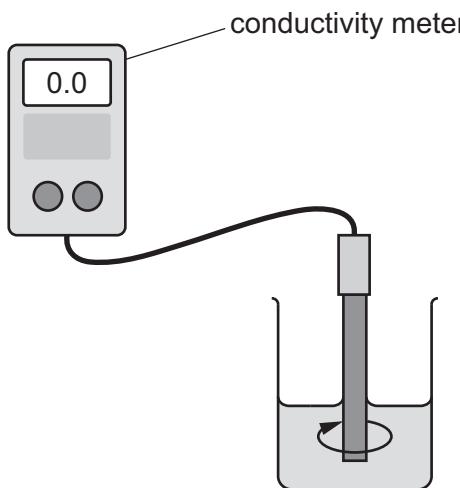


Fig. 2.1

(i) Suggest a suitable piece of apparatus to transfer 25.00 cm^3 of the lake water sample to the beaker in step 1.

..... [1]

(ii) $0.100 \text{ mol dm}^{-3}$ $\text{Ba}(\text{OH})_2(\text{aq})$ is an irritant to skin and eyes. Other than wearing safety goggles, state **one** safety precaution that the student should take when conducting this experiment.

..... [1]

(b) The student's results are given in Table 2.1.

A correction can be applied to the conductivity values to take into account dilution of the solution as its volume increases using the following equation.

$$\text{corrected conductivity} = \text{measured conductivity} \times \frac{(\text{total volume in beaker})}{25.00}$$

Table 2.1

reading number	volume of 0.100 mol dm ⁻³ Ba(OH) ₂ (aq) added to beaker/cm ³	total volume in beaker/cm ³	measured conductivity / $\mu\text{S cm}^{-1}$	corrected conductivity / $\mu\text{S cm}^{-1}$
1	0.00	25.00	37 000	37 000
2	5.00		23 000	27 600
3	10.00		12 000	16 800
4	15.00		2 300	3 680
5	20.00		5 000	
6	25.00		12 000	
7	30.00		18 000	
8	35.00		21 000	
9	40.00		24 500	

(i) Complete Table 2.1.

[2]

(ii) Identify the independent variable in this experiment.

[1]

.....

DO NOT WRITE IN THIS MARGIN

(c) Plot a graph on the grid in Fig. 2.2 to show the relationship between corrected conductivity and volume of $0.100 \text{ mol dm}^{-3}$ $\text{Ba}(\text{OH})_2$ added to beaker.

Use a cross (\times) to plot each data point.

Draw a line of best fit using readings 1 to 4 and another line of best fit using readings 5 to 9. Extend the lines so that they intersect.

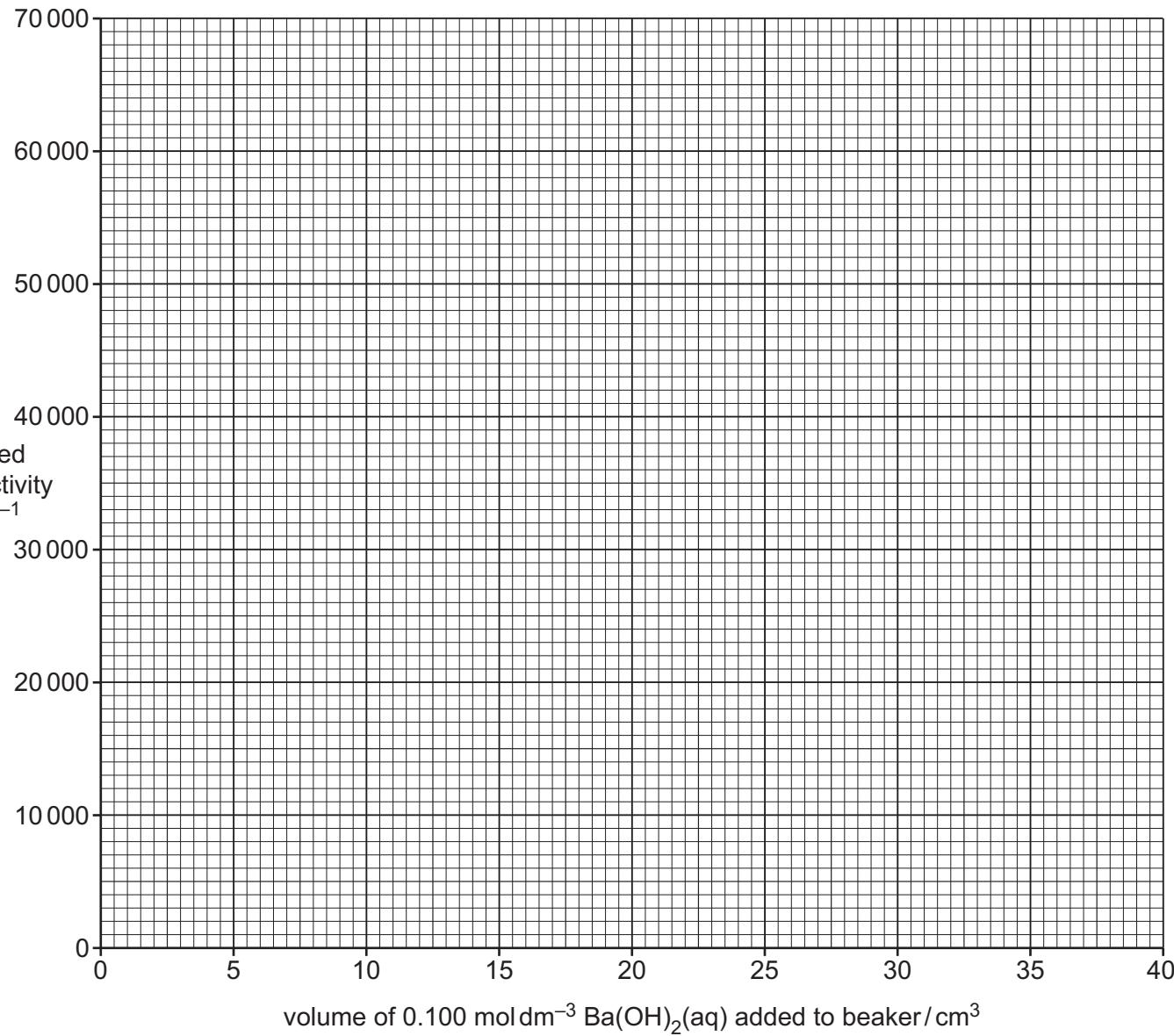
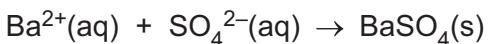


Fig. 2.2

[2]



(d) The point on the graph where the two lines intersect indicates the volume of $0.100 \text{ mol dm}^{-3}$ $\text{Ba}(\text{OH})_2(\text{aq})$ required to react exactly with the $\text{SO}_4^{2-}(\text{aq})$ present in 25.00 cm^3 of lake water being tested.

(i) Use the graph in Fig. 2.2 to determine the volume of $0.100 \text{ mol dm}^{-3}$ $\text{Ba}(\text{OH})_2(\text{aq})$ required to react exactly with $\text{SO}_4^{2-}(\text{aq})$ in the lake water sample.

$$\text{volume required} = \dots \text{ cm}^3 [1]$$

(ii) The equation for the reaction taking place in the beaker is shown.

Use your answer in (d)(i) to calculate the concentration of $\text{SO}_4^{2-}(\text{aq})$ in the lake water sample.

$$\text{concentration of } \text{SO}_4^{2-}(\text{aq}) = \dots \text{ mol dm}^{-3} [1]$$

(e) The concentration of $\text{SO}_4^{2-}(\text{aq})$ in a sample of water can also be determined by measuring the mass of precipitate produced when excess $\text{Ba}(\text{OH})_2(\text{aq})$ is added to the sample.

The student suggests the following method.

step 1 Place 25.0 cm^3 of the water sample in a conical flask.

step 2 Add excess $0.100 \text{ mol dm}^{-3} \text{ Ba}(\text{OH})_2(\text{aq})$ to the flask.

step 3 Filter the contents of the flask.

step 4 Dry the residue in a warm oven.

step 5 Measure the mass of residue.

(i) Draw a labelled diagram to describe the arrangement of apparatus that would be needed to complete step 3.

[1]

(ii) Suggest a step that the student should add between steps 3 and 4 to improve this method.

..... [1]

(iii) Describe what the student can do to ensure that the residue weighed in step 5 is completely dry.

..... [1]

(iv) The mass of residue is used to calculate the concentration of $\text{SO}_4^{2-}(\text{aq})$.

Suggest the effect, if any, on the concentration of $\text{SO}_4^{2-}(\text{aq})$ that is calculated if the residue is **not** completely dried in step 4.

Explain your answer.

effect on concentration of $\text{SO}_4^{2-}(\text{aq})$ calculated

explanation

[1]

[Total: 13]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (4.18 J g ⁻¹ K ⁻¹)

The Periodic Table of Elements

1		2		Group																													
1		2		Group																													
1		2		Group																													
Key	atomic number name relative atomic mass	Key	atomic symbol name relative atomic mass	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18												
Li	4 lithium 6.9	Be	5 beryllium 9.0	H	hydrogen 1.0																												
Na	11 sodium 23.0	Mg	12 magnesium 24.3																														
K	19 potassium 39.1	Ca	20 calcium 40.1	Sc	21 scandium 45.0	Ti	22 titanium 47.9	V	23 vanadium 50.9	Cr	24 chromium 52.0	Mn	25 manganese 54.9	Fe	26 cobalt 55.8	Co	27 copper 58.9	Ni	28 nickel 58.7	Cu	29 zinc 63.5	Zn	30 gallium 65.4	Ge	31 germanium 69.7	As	32 arsenic 72.6	Se	33 selenium 74.9	Br	34 bromine 79.0	Kr	35 krypton 83.8
Rb	37 rubidium 85.5	Sr	38 strontium 87.6	Y	39 yttrium 88.9	Nb	40 niobium 91.2	Mo	41 molybdenum 95.9	Tc	42 technetium –	Ru	43 ruthenium 101.1	Rh	44 rhodium 102.9	Pd	45 palladium 106.4	Ag	46 silver 107.9	Cd	47 cadmium 112.4	In	48 indium 114.8	Sb	49 antimony 118.7	Te	50 tellurium 121.8	I	51 iodine 127.6	Xe	52 xenon 131.3		
Cs	55 caesium 132.9	Ba	56 barium 137.3	La	57–71 lanthanoids 178.5	Hf	72 hafnium 180.9	Ta	73 tantalum 183.8	W	74 tungsten 186.2	Re	75 rhenium 192.2	Os	76 osmium 190.2	Pt	77 platinum 195.1	Au	78 gold 197.0	Hg	79 mercury 200.6	Tl	80 thallium 204.4	Pb	81 lead 207.2	Bi	82 bismuth 209.0	Po	83 polonium –	At	84 astatine –	Rn	85 radon –
Fr	87 francium –	Ra	88 radium –			Rf	104 actinoids –	Db	105 dubnium –	Sm	106 seaborgium –	Sg	107 bohrium –	Hs	108 hassium –	Mt	109 meitnerium –	Rg	110 roentgenium –	Cn	111 copernicium –	Nh	112 nihonium –	Fl	113 flerovium –	Lv	114 moscovium –	Ts	115 livornium –	Og	116 tennessine –	Fr	117 oganesson –
lanthanoids	57 lanthanum 138.9	Ce	58 cerium 140.1	Pr	59 praseodymium 140.9	Nd	60 neodymium 144.2	Pm	61 promethium –	Sm	62 samarium 150.4	Eu	63 europium 152.0	Gd	64 gadolinium 157.3	Tb	65 terbium 158.9	Dy	66 dysprosium 162.5	Ho	67 holmium 164.9	Er	68 erbium 167.3	Tm	69 thulium 168.9	Yb	70 ytterbium 173.1	Lu	71 lutetium 175.0				
actinoids	89 actinium –	Th	90 thorium 232.0	Pa	91 protactinium 231.0	U	92 uranium 238.0	Np	93 neptunium –	Pu	94 plutonium –	Am	95 americium –	Cm	96 curium –	Bk	97 berkelium –	Cf	98 californium –	Es	99 einsteinium –	Md	100 mendelevium –	No	101 nobelium –	Lr	102 lawrencium –						

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

