

Cambridge International AS & A Level

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

BIOLOGY

9700/23

Paper 2 AS Level Structured Questions

October/November 2025

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Any blank pages are indicated.

1 Many substances can move through cell surface membranes between the cytoplasm of animal cells and the extracellular environment.

(a) A student made a drawing to summarise the movement of substances across the cell surface membranes of mammalian red blood cells.

Fig. 1.1 shows the drawing made by the student:

- Each arrow indicates the movement of a substance through the membrane.
- The number of each of the 4 shapes represents the relative concentrations of each substance in the cytoplasm and in the blood plasma.

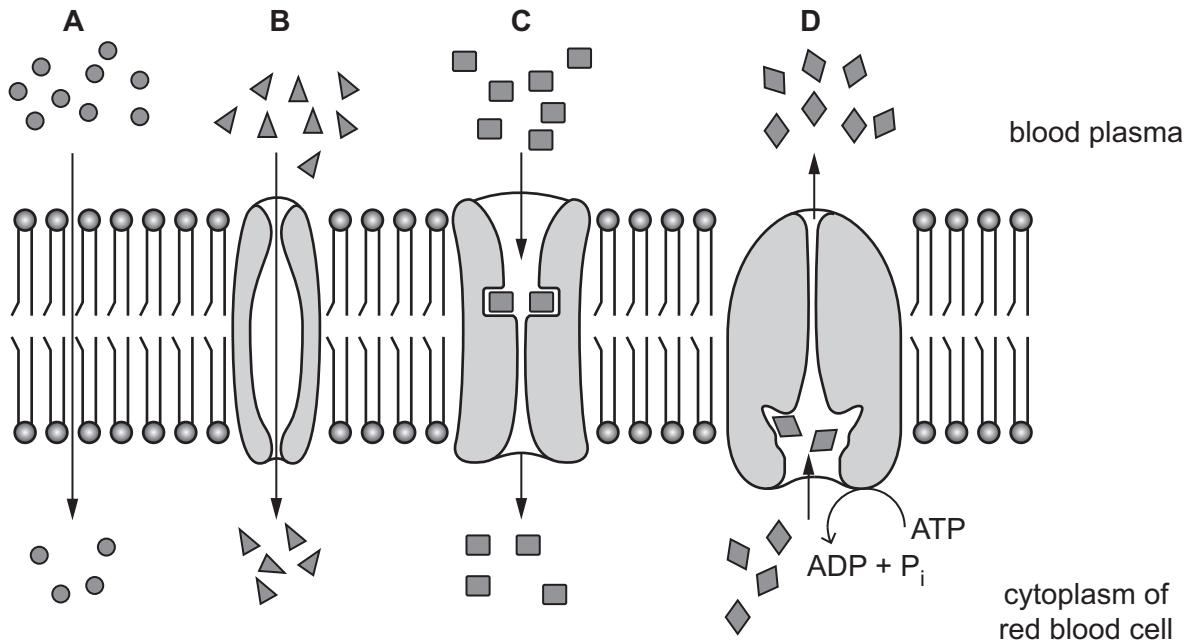


Fig. 1.1

The student carried out research and made a list of some of the substances found in red blood cells as shown in Fig. 1.2.

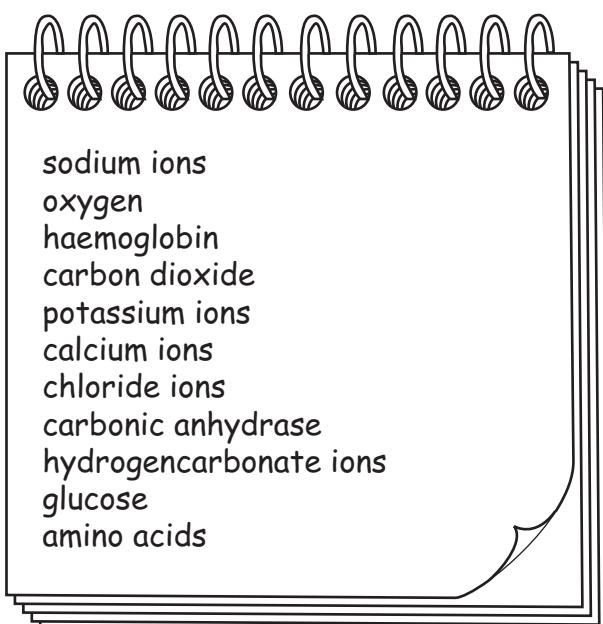


Fig. 1.2

DO NOT WRITE IN THIS MARGIN

Table 1.1 shows information about the 4 types of movement of substances across the cell surface membranes of red blood cells as shown in Fig. 1.1.

Complete Table 1.1 using the information in Fig. 1.1 and Fig. 1.2.

Table 1.1

letter from Fig. 1.1	type of movement	name of part of membrane involved	example of a substance that moves across the membrane (from Fig. 1.2)
A	simple diffusion	phospholipids	
B	facilitated diffusion		calcium ions
C	facilitated diffusion		
D			

[5]

(b) Some viruses infect plants through the surfaces of damaged leaves. These plant viruses can travel from one leaf cell to another without having to pass through any cell surface membranes.

Explain how some plant viruses can travel from one cell to another without passing through cell surface membranes.

.....

.....

.....

.....

.....

[2]

[Total: 7]

2 Collagen is a fibrous protein found in many tissues in animals.

Fig. 2.1 shows the composition of a collagen fibre.

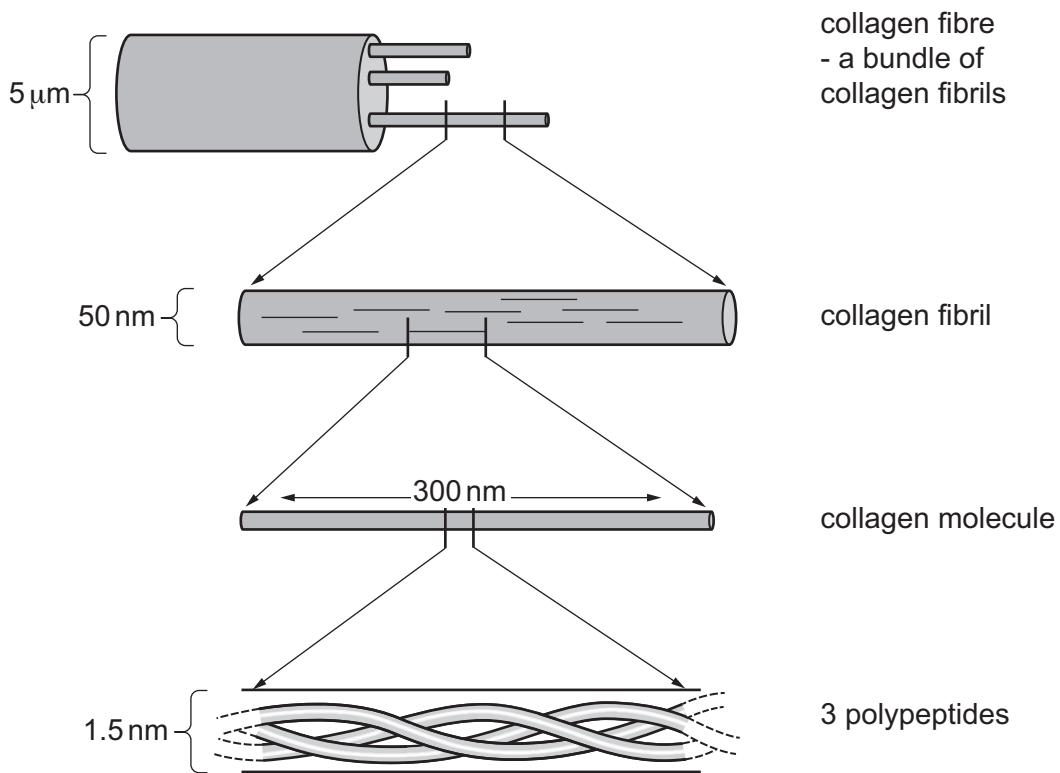


Fig. 2.1

(a) (i) Describe the arrangement of the 3 polypeptides in each molecule of collagen.

.....

 [2]

(ii) With reference to Fig. 2.1, explain how the molecules of collagen are arranged **and** held together in a collagen fibril.

.....

 [3]

(b) Collagen fibres and elastic fibres are found in the structures of the gas exchange system of mammals.

(i) Suggest **two** properties of collagen that contribute to the function of cartilage in the trachea in the gas exchange system.

.....
.....
.....
.....
.....

[2]

(ii) State the function of elastic fibres in the alveoli in the lungs.

..... [1]

(c) Table 2.1 shows the DNA triplets in the two strands of DNA in part of a gene that codes for one of the polypeptides in collagen.

Table 2.1

non-transcribed strand	GGT	CCA	ATG	GGT	CCC	CGA	GGT	CCC	CCA	GGT
template strand	CCA	GGT	TAC	CCA	GGG	GCT	CCA	GGG	GGT	CCA
amino acid	gly									

Table 2.2 shows the triplets of bases in **DNA** and the amino acids for which they code.

The table can be used to determine the sequence of the amino acids in a polypeptide.

Table 2.2

		second base													
first base	T	T		C		A		G				T			
		TTT	phe	TCT	ser	TAT	tyr	TGT	cys						
		TTC		TCC		TAC		TGC							
		TTA	leu	TCA		TAA	stop	TGA	stop	A					
	C	TTG		TCG		TAG		TGG	trp	G					
		CTT		CCT	pro	CAT	his	CGT				T			
		CTC	leu	CCC		CAC		CGC							
		CTA		CCA		CAA	gln	CGA							
	A	CTG		CCG		CAG		CGG				C			
		ATT		ACT	thr	AAT	asn	AGT							
		ATC	ile	ACC		AAC		AGC							
		ATA		ACA		AAA	lys	AGA							
	G	ATG	met	ACG		AAG		AGG	arg			A			
		GTT		GCT	ala	GAT	asp	GGT							
		GTC		GCC		GAC		GGC							
		GTA		GCA		GAA	glu	GGA							
		GTG		GCG		GAG		GGG							
												third base			

(i) Complete Table 2.1 to show the amino acids coded by the DNA nucleotide sequence in Table 2.1. [1]

(ii) The sequence of amino acids that you have worked out is representative of the whole of the collagen polypeptide.

Explain how the sequence of amino acids makes the polypeptide suitable as a component of a collagen molecule.

.....
.....
.....
.....
.....
.....
.....

[3]

(iii) Two mutations, **P** and **Q**, can have an effect on the primary structure of the polypeptide.

- Mutation **P** is a deletion of the first nucleotide pair in the DNA nucleotide sequence shown in Table 2.1.
- Mutation **Q** is a substitution of G with T as the first base in the DNA nucleotide sequence shown in Table 2.1.

State the effects of the mutations, **P** and **Q**, on the primary structure of the polypeptide.

mutation **P**

.....
.....

mutation **Q**

.....
.....

[2]

[Total: 14]

3 (a) Describe the induced-fit hypothesis of enzyme action.

.....
.....
.....
.....
.....
.....
.....
.....

[3]

(b) Many marine organisms can become attached to hard surfaces such as rocks or the surfaces of ships. These organisms are known as fouling organisms.

The larva of the acorn barnacle, *Amphibalanus amphitrite*, is an example of a fouling organism. One of these barnacle larvae is shown in Fig. 3.1.

magnification $\times 160$

Fig. 3.1

The larvae of *A. amphitrite* use a protein to attach themselves to the surfaces of ships.

It is expensive to remove fouling organisms from ships. Scientists have developed substances to prevent the attachment of larvae. However, some of these substances are toxic and have been responsible for a decrease in marine biodiversity.

Scientists investigated the effect of using an immobilised protease, subtilisin A, to prevent the attachment of the larvae of *A. amphitrite* to surfaces.

The scientists used 4 different concentrations of subtilisin A which had been immobilised onto the surface of a polymer film. As a control they used denatured subtilisin A immobilised onto the surface of the same polymer. Glass slides were also used as a control.

- 4 tanks, each with a polymer surface and a different concentration of immobilised subtilisin A
- 1 tank with a polymer surface and denatured immobilised subtilisin A
- 1 tank with glass slides instead of a polymer surface.

The number of larvae that attached to the different surfaces in the tanks was counted after 24 hours and again after 48 hours.

The number of larvae attached in each tank was expressed as the percentage of the total number of larvae released in each tank. The results are shown in Fig. 3.2.

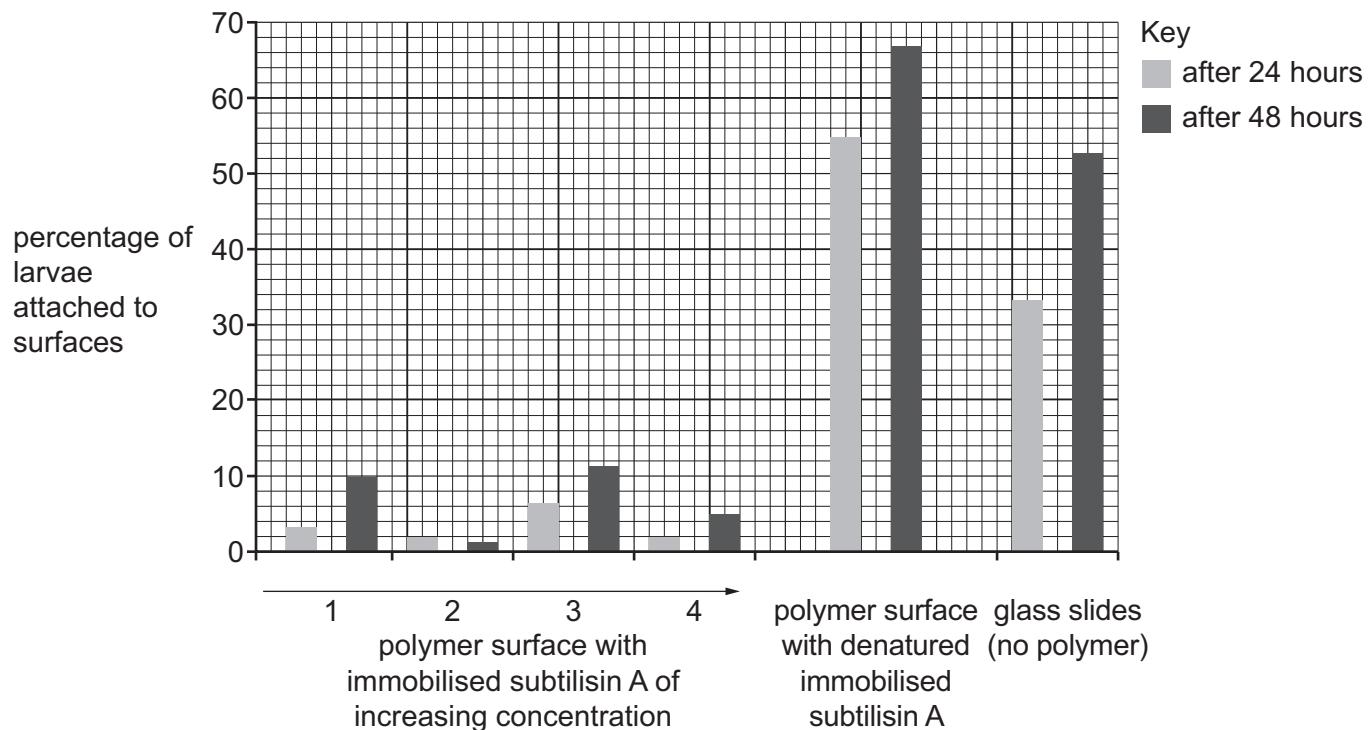


Fig. 3.2

(i) With reference to the data in Fig. 3.2, discuss whether subtilisin A is effective in preventing the attachment of the larvae.

[4]

(ii) The scientists extended their investigation by applying the polymer with immobilised subtilisin A to the outside of the bottom of small ships.

Two factors that need to be taken into consideration in this type of investigation are the temperature and pH of the sea water.

Outline **two other** factors that need to be taken into consideration when investigating the suitability of immobilised subtilisin A as an anti-fouling agent for ships.

.....

.....

.....

.....

.....

.....

.....

[2]

[Total: 9]

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

4 (a) Fig. 4.1 shows a phosphorylated nucleotide which is one of the monomers that is used to synthesise DNA during replication.

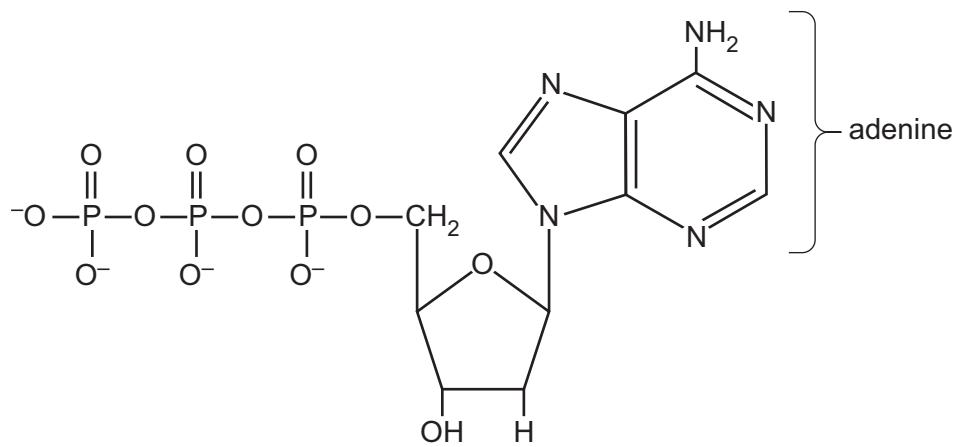
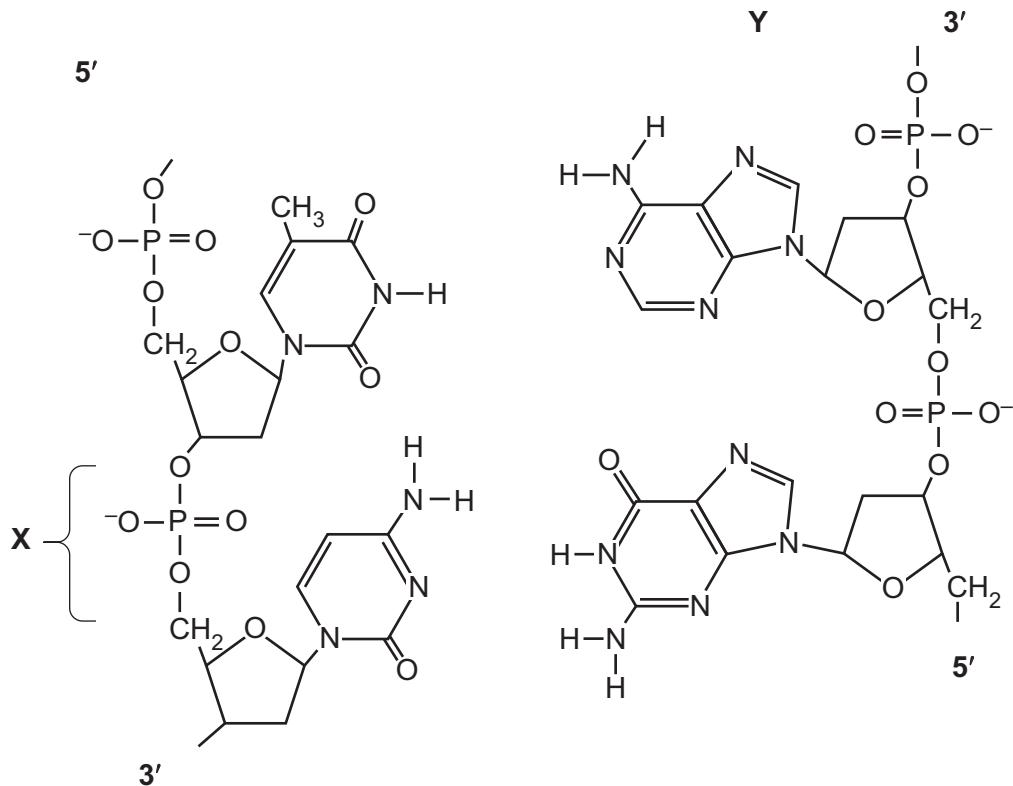


Fig. 4.1

(i) State the meaning of monomers of DNA.

..... [1]

(ii) State how ATP differs in structure from the phosphorylated nucleotide shown in Fig. 4.1.


.....
.....
..... [1]

(iii) State the process occurring in all cells that results in the production of ATP.

..... [1]

(b) Fig. 4.2 shows a short length of a DNA molecule. One of the strands of the DNA molecule is labelled Y.

Fig. 4.2

(i) Complete Fig. 4.2 by drawing dotted lines to represent all the hydrogen bonds between the two strands of the DNA molecule. [2]

(ii) State the name of the bond X. [1]

[Total: 6]

5 Inhibitors are substances that prevent biological processes in a variety of different ways.

Table 5.1 shows some antibiotics, their modes of action and the diseases which they are used to treat.

Table 5.1

antibiotic	mode of action	disease
erythromycin	binds to ribosomes to inhibit translation	cholera
penicillin	enzyme inhibitor	tetanus
rifampicin	inhibits the function of RNA polymerase in transcription	tuberculosis

(a) Suggest why erythromycin can inhibit translation in the bacterium that causes cholera **and not** inhibit translation in humans who are infected with this pathogen.

.....

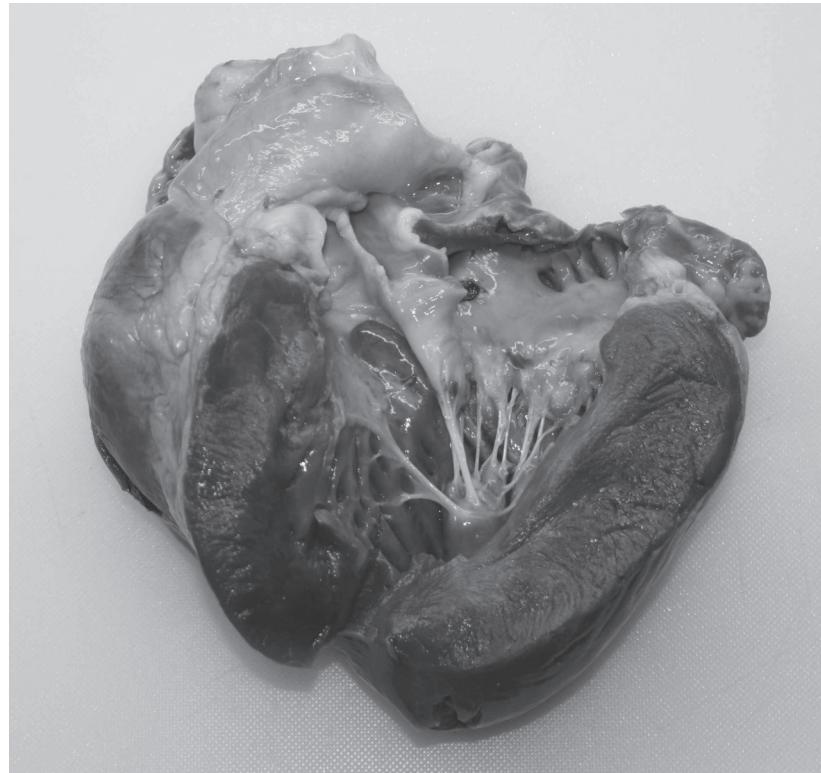
 [2]

(b) State why penicillin does **not** act on human cells.

.....

 [1]

(c) Explain **one** way in which rifampicin may inhibit the action of RNA polymerase in transcription.


.....

 [1]

[Total: 4]

6 (a) A student studied the structure of a mammalian heart.

The student took a photograph of the left side of a dissected heart as shown in Fig. 6.1.

Fig. 6.1

Identify **two** features of the left side of the heart visible in Fig. 6.1 **and** explain how each feature is adapted to the function of the heart.

feature

explanation

.....

.....

feature

explanation

.....

.....

.....

[4]

(b) Cardiac muscle is described as myogenic. This means the electrical activity controlling the rhythm of a regular heartbeat begins within the muscle tissue of the heart.

Describe how electrical activity within the heart controls each heartbeat.

.....
.....
.....
.....
.....
.....
.....
.....

[4]

(c) Tissue fluid is formed from blood plasma as it flows through capillaries.

Fig. 6.2 is a diagram of a capillary and some adjacent tissue cells in a capillary network.

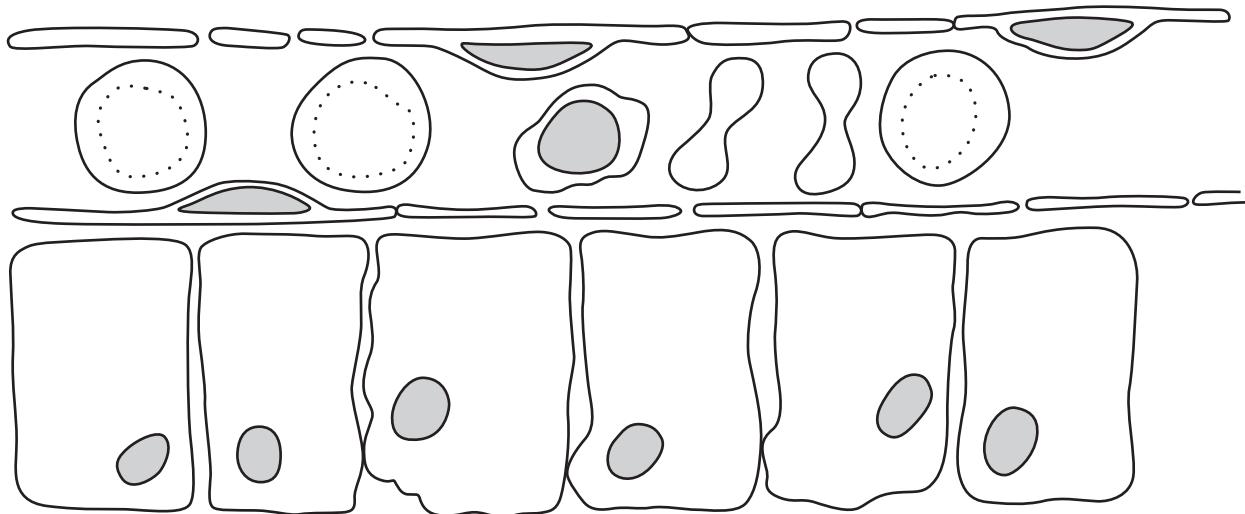


Fig. 6.2

(i) Describe **two** functions of tissue fluid.

.....
.....
.....
.....
.....

[2]

(ii) With reference to Fig. 6.2, describe how tissue fluid is formed.

.....
.....
.....
.....
.....
.....
.....

[3]

(d) Measles is a common disease caused by a virus. Vaccination to prevent the disease has been very successful.

(i) A child receives a vaccine for measles.

Explain why only some of the T-lymphocytes in the child respond to the measles vaccine.

.....
.....
.....
.....
.....
.....
.....

[2]

(ii) Describe the events that occur in an immune response to a vaccine that result in lymphocytes that provide long-term immunity to measles.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

[5]

[Total: 20]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

The boundaries and names shown, the designations used and the presentation of material on any maps contained in this question paper/insert do not imply official endorsement or acceptance by Cambridge Assessment International Education concerning the legal status of any country, territory, or area or any of its authorities, or of the delimitation of its frontiers or boundaries.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

